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Abstract. Learning programming has become increasingly popular, with learners from diverse 
backgrounds and experiences requiring different support. Programming-process analysis helps to 
identify solver types and needs for assistance. The study examined students’ behavior patterns in 
programming among beginners and non-beginners to identify solver types, assess midterm exam 
scores’ differences, and evaluate the types’ persistence. Data from Thonny logs were collected 
during introductory programming exams in 2022, with sample sizes of 301 and 275. Cluster 
analysis revealed four solver types: many runs and errors, a large proportion of syntax errors, 
balance in all features, and a late start with executions. Significant score differences were found 
in the second midterm exam. The late start of executions characterizes one group with lower 
performance, and types are impersistent during the first programming course. The findings un-
derscore the importance of teaching debugging early and the need to teach how to program using 
regular executions.

Keywords: behavior features in programming, behavior patterns in programming, programming-
process analysis, clustering, introductory programming.

1. Introduction

Analysis of the programming process has become one of the ways to get an overview 
of how students program and identify what kind of help they need in introductory in 
programming (Blikstein, 2011; Hosseini et al., 2014; Vihavainen et al., 2014a). For ex-
ample, some students add code incrementally and test it regularly. However, some write 
a large part of the code and then start improving it (Hosseini et al., 2014; Meier et al., 
2020). The use of trial-error attempts has also been mentioned separately (Blikstein, 
2011; Jemmali et al., 2020; Hosseini et al., 2014; Michaeli & Romeike, 2019). The lat-
ter has been associated with beginners (Blikstein, 2011). In the context of this article, 
beginners are those who have never tried to program. In addition, beginners have been 
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found to use a lot of copying and pasting (Blikstein, 2011; Vihavainen et al., 2014a). 
It has also been emphasized that students use copying and pasting in the first weeks of 
the course (Vihavainen et al. 2014a), which suggests that there are changes in behavior 
features in programming during the course. It has also been observed that finding syntax 
errors is difficult for beginners, especially early in the course (Denny et al., 2012; Mar-
ceau et al., 2011). These results show that when studying learner behavior features and 
patterns in programming, it is necessary to consider previous programming experience 
and determine how behavior features and patterns in programming change during the 
course. In this article, a behavior pattern in programming refers to how a group conducts 
itself throughout the programming process.

2. Literature Review

2.1. Challenges in Teaching Programming in Introductory Courses

As the number of people learning programming has grown, this poses several chal-
lenges for introductory courses (Luxton-Reilly et al., 2018; Santos et al., 2013; Utting 
et al., 2013). High dropout and failure rates in introductory programming courses are 
also continuously problematic (Luxton-Reilly, 2016; Medeiros et al., 2018; Watson 
& Li, 2014). Therefore, there is a need for further course development, and it is es-
sential to consider and pay more attention to the higher diversity of students (Becker 
et al., 2019; O’Malley & Aggarwal, 2020; Santos et al., 2013). Students in introductory 
courses have different levels of previous programming experience, and some do not 
have any knowledge of the field. Research has shown that students with prior program-
ming experience perform better in introductory courses (Ateeq et al., 2014; Porter & 
Zingaro, 2014; Veerasamy et al., 2018). It has been emphasized that prior experience 
influences, particularly, the outcome of the first programming course during the studies 
(Holden & Weeden, 2003). 

From other perspectives, the very beginning of programming education is also es-
sential. Porter and Zingaro (2014) found that the results of weeks three and four are 
most predictive of final grades. This observation is supported by other works, which 
also indicate a correlation between the first weeks’ results and final grades (Ahadi et al., 
2014; Estey & Coady, 2016). Some papers have pointed out that difficulties with syn-
tax errors are also most common at the beginning of the course (Denny et al., 2012; 
Marceau et al., 2011), and the skills to find and fix syntax errors are related to the final 
grade (Zhang et al., 2022). The study showed that students who were good at debug-
ging achieved better results on the first exam, and the difference in results increased in 
the next exam. It aligns with Watson et al. (2013), who found that the time spent fixing 
errors predicts students’ performance. Therefore, spotting students who struggle with 
syntax errors is essential. Smith and Rixner (2019) recommend providing them with 
targeted instructions. Research has also revealed a need to focus on teaching debugging 
at the beginning of the course (Zhang et al., 2022). It is a valuable skill that helps fix 
errors and understand the sequence of the program commands. Teaching debugging is 
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essential, especially since research has shown that beginners usually do not use debug-
ging (Ardimento et al., 2022; Liu & Paquette, 2023). They also make changes without 
checking the correctness (Ardimento et al., 2022).

2.2. Programming-Process Analysis

Analysis of the programming process has been used in various ways to understand and 
support programming education. One option is to focus on beginners to understand what 
differentiates their programming from those who have some previous experience. For 
example, using an environment that records every keystroke event, it has been found 
that beginners copy-paste a lot in the beginning when they learn to program (Vihavainen 
et al., 2014a). This is in line with Blikstein’s (2011) work, which was also based on key-
stroke recording, which found that beginners use more copying, pasting, and customiza-
tion of the code obtained from external sources. It has also been found that the workload 
of beginners is significantly higher when solving programming tasks than those with 
some prior programming experience (Vihavainen et al., 2014b), and they use many trial-
and-error attempts (Blikstein, 2011). Another observation has been that students’ pro-
gramming styles vary, and the trial approach characterizes only some of them (Hosseini 
et al., 2014). Research has shown that some execute the program very late, for the first 
time, after most of it has been written (Meier et al., 2020). Paying attention to differ-
ences in programming styles is essential because students with different programming 
styles need different support strategies (Blikstein, 2011).

Another important direction in the analysis of the programming process is to iden-
tify the students who have difficulties and the characteristics of the programming pro-
cess that predict higher or lower final exam scores. Based on a snapshot analysis or 
automatic detection of programming behavior, it was found that weaker students try 
different options at random without thorough thinking (Heinonen et al., 2014) and are 
likely to make many submissions in a short time (Bey et al., 2019). At the same time, 
students with higher results make more changes between submissions (Pereira et al., 
2020) and spend more time between compilations (Tabanao et al., 2011). However, 
another research found that the size of code updates is unrelated to course outcomes 
(Blikstein et al., 2014). Estey and Coady (2016) revealed that at-risk students are char-
acterized by a combination of low compilation rates and repeated hint usage. Research 
has also shown that students with better performance deal with errors better (Pereira 
et al., 2020; Zhang et al., 2022), and the level of debugging skills is the key to good 
results (Zhang et al., 2022). It is in line with other work based on log data, which re-
vealed that error-resolving time is essential in predicting student outcomes (Watson 
et al., 2013). Errors as a component related to students’ performance have been taken 
into account in various studies (Bey et al., 2019; Carter et al., 2015; Estey & Coady, 
2016; Jadud, 2006; Pereira et al., 2020; Pereira et al., 2021; Price et al., 2020; Watson 
et al., 2013; Watson & Li, 2014). Attention has also been paid to syntax errors, and it 
has been found that effective dealing with these is related to better final results (Pereira 
et al., 2020; Zhang et al., 2022). Fewer errors have also been associated with better 
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progress (Tabanao et al., 2011). In addition, it has been pointed out that students with 
better results tend to edit programs with recent runtime errors. Still, students who fail 
exams deal more with syntax errors or edit programs that have never been executed 
(Carter & Hundhausen, 2017).

In addition to those mentioned above, further behavior features in programming have 
been associated with students’ performance. Shrestha et al. (2022) used keystroke-level 
analysis. They revealed, focusing on the length of pauses, that the students with fewer 
medium (3–10 minutes) or long pauses tended to perform better in the exam. More 
frequent use of medium or long pauses may indicate that students needed to search for 
additional materials. The greater use of copy-pasting is also associated with lower exam 
scores (Pereira et al., 2020). It has also been revealed that debugging mode is used most 
frequently by students with average results (Carter & Hundhausen, 2017). At the same 
time, students with the best results use the debugger less often, and it is similar to stu-
dents with worse outcomes. Some studies have focused on changes in student program-
ming patterns throughout the course. For example, it has been found that students who 
have more changes in the code update patterns (code update pattern means here a com-
bination of code update size and frequency) during the course have better final outcomes 
(Blikstein et al., 2014). This is supported by Estey and Coady (2016), showing that at-
risk students’ behavior features in programming appear at the beginning of the semester, 
and they continue to exhibit the same behavior throughout the semester.

2.3. Student Profiling

Researchers have created student profiles based on various programming process char-
acteristics, which describe the different aspects of the process. One way is to use de-
tailed data, including code size increases, decreases, and plateaus. For example, Blik-
stein (2011) divided students into three main groups based on detailed program process 
data: Copy and pasters, Mixed-mode, and Self-sufficient. Copy and pasters use exist-
ing programs as a starting point, and they have long plateaus as they look for sample 
programs for copying from instruction materials or their previous work. This coding 
strategy is characteristic of beginners, and others are more common among non-begin-
ners. Self-sufficient students do not have drastic increases in the number of characters 
because of copying. They have two main periods combined: linear growth of character 
count, dealing with errors, and long plateaus without browsing materials. Mixed mode 
is the combination of the other two. Other research (Hosseini et al., 2014) also used de-
tailed programming data, including increases, decreases, and plateaus in an introductory 
course, and divided students as follows: Builders, Massagers, Reducers, and Strugglers. 
Builders work gradually, Massagers do the same but have long plateaus as well, Reduc-
ers reduce code already written, and Strugglers struggle to pass any tests. This kind of 
grouping gives a good overview of students’ differences in programming, and analyzing 
their performance would provide additional essential information.

Some studies use a grouping of students to analyze further how behavior patterns 
in programming relate to success. In one study, students were divided into three groups 
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based on the number of unit test runs, and the following groups were discerned: intel-
lects, thinkers, and probers (Sharma et al., 2018). The intellects had the lowest number 
of runs, the longest time between executions, and the highest number of code changes. 
The probers had the highest number of runs, the shortest time between executions, and 
the lowest number of code changes. The research showed that intellects had the high-
est and the probers the lowest unit test success. We can guess that the probers tend to 
use a trial-and-error approach. The students with the best results had the lowest number 
of runs, but it is unclear if some students have more runs but perform well. However, 
some previous research results are contradicting this. For example, the research that uses 
code snapshots of every execution and analyzes them with machine-learning techniques 
shows that the group of students who took consistently smaller steps in moving towards 
the solution performed better than those who, at some point, suddenly transformed a 
semi-working program into the correct solution (Piech et al., 2012). 

The number of submissions is also a behavior feature used in student profiling. Based 
on cluster analysis, Bey et al. (2019) differentiated three groups. Cluster 1 made more 
submissions than the others, but Cluster 2 spent more time before submitting and made 
more changes than the other clusters. Cluster 3 made fewer submissions than Cluster 1, 
spent less time before submitting, and made fewer changes than Cluster 2. Cluster 3 had 
the largest number of high performers. It is in line with other research that used cluster 
analysis based on specific features, which included the number of submissions, the vol-
ume of code modifications, and the time between submissions and syntactic correctness 
(Bey & Champagnat, 2022). They concluded that better-performing students designed 
the complete solution at the beginning and then submitted and started to fix errors. At 
the same time, students who wrote only some lines of code and then started compiling 
had lower final scores in the course. Among others, they found a cluster representing stu-
dents who are good at designing the global solution but make syntactical errors because 
they hurry to get an assessment result. Analyzing submissions with other features gives 
valuable insights into students’ behavior patterns but leaves out the process between 
submissions.

In addition, there are studies where one component of the code construction pat-
tern has been used as the basis for grouping with cluster analysis. For example, a study 
monitored pauses during the programming process (Shrestha et al., 2022). They ana-
lyzed pauses of different lengths during programming, dividing pauses as follows: micro 
(2–15 seconds), short (16–180 seconds), medium (3–10 minutes), and long (above 10 
minutes). Two groups were identified based on pause lengths, concluding that the stu-
dents who took relatively more micro pauses performed better than those with a higher 
share of short, medium, and long pauses.

Efforts have also been made to incorporate many different behavior features. A study 
used large datasets and varied behavior features in programming to look inside the pro-
gramming process and its context during the course (Pereira et al., 2020). The analysis 
revealed three clusters based on multiple features. In addition to the usual features re-
lated to errors, correctness, use of copy-paste, changes between submissions, etc., they 
incorporated features that characterize longer processes, for example, IDE (integrated 
development environment) usage time, number of logins during the four weeks, and 
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amount of time between the first line of code and assignment deadline. The clusters also 
differed in the final grade (Pereira et al., 2020). The groups were designated as A, B, 
and C. A included the most high-performing students, B was in the middle, and students 
in cluster C performed the worst. The well-performing students have fewer errors, deal 
with them better, need less time for corrections, make more changes between submis-
sions, and use less copy-pasting. They have also stronger engagement with the course 
and spend more time in the programming environment. 

Some analyses have been done about movements between clusters. For example, 
researchers analyzed students’ movement between the clusters during the three weeks of 
the course and revealed that low performers had more frequent cluster changes (Bey & 
Champagnat, 2022). It contradicts other research, which revealed that higher-perform-
ing students have more changes in behavior patterns in programming during the course 
(Blikstein et al., 2014; Estey & Coady, 2016). In conclusion, it can be said that students’ 
behavior features have been used in different ways for profiling. However, some gaps 
and contradictory results are related to the graduality of creating programs (small steps 
vs designing the bulk of the solution at first) and changes in behavior patterns. 

2.4. Research Problem

Dividing students into groups has been employed to identify behavioral patterns in pro-
gramming that are characteristic of higher-performing students. For instance, a study 
utilizing cluster analysis to form groups revealed that students with better performance 
correct errors more quickly, encounter fewer repeated issues with the same errors, and 
make fewer syntax errors (Pereira et al., 2020). These findings are supported by earlier 
research conducted by Vihavainen (2013) and Zhang et al. (2022). Additionally, high-
er-performing students tend to copy and paste less frequently, as Pereira et al. (2020) 
highlighted. This observation aligns with the findings of Shrestha et al. (2022), another 
cluster analysis-based study, which demonstrated that students who take fewer long 
pauses (exceeding 10 minutes) achieve better results. Long pauses were associated with 
searching for external resources or materials. Furthermore, strong debugging skills have 
also been identified as a key characteristic of better-performing students (Zhang et al., 
2022). There is limited research exploring that debugging skills may also be associated 
with the timing of the first code execution. Specifically, a study has shown that students 
who write a substantial portion of their code before the first execution tend to achieve 
lower exam scores than those who execute their code earlier (Meier & Lepp, 2023). 
However, whether this finding applies to students in introductory courses with no prior 
programming experience remains unknown. There have been some attempts to inves-
tigate changes in behavior patterns in programming during a course, but the results are 
conflicting (e.g., Bey et al., 2019; Estey & Coady, 2016). Building on previous research, 
the question remains: Which behavior patterns in programming characterize beginners, 
how are these patterns related to performance, and how do these patterns and tendencies 
differ from those of non-beginners? Focusing on beginners is critical because researchers 
have pointed to differences in coding between beginners and non-beginners (Blikstein, 
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2011; Vihavainen et al., 2014b). Furthermore, many challenges beginners face manifest 
early in the course (Denny et al., 2012; Marceau et al., 2011). Gaining a deeper under-
standing of beginners’ ineffective behavior patterns in programming can help educators 
focus on improving these skills. It is also essential to monitor changes in thes behavior 
patterns over the course duration. This provides guidance on the key aspects to empha-
size when teaching both at the start of the course and in subsequent stages. Considering 
the above, the following research questions were posed:

What types of solvers can be differentiated from the analysis of the programming  ●
process (of beginners and non-beginners)?
Are there statistically significant differences in the midterm exam scores of differ- ●
ent solver types (beginners and non-beginners)?
How persistent are the solver types among beginners and non-beginners over  ●
time?

3. Methodology

This study aimed to examine students’ behavior patterns in programming among begin-
ners and non-beginners to identify solver types, assess midterm exam scores’ differences 
between solver types, and evaluate the types’ persistence. Therefore, cluster analysis, 
which represents a quantitative approach, was used in this study. A quantitative approach 
was chosen because it is based on objective measurement and allows the detection of 
patterns and trends using data and the generalization of findings to a broader popu-
lation (Dehalwar & Sharma 2024). Clustering can reveal hidden patterns in datasets, 
and it is common in previous studies to use the k-means algorithm to detect student 
profiles based on programming-process data (e.g., Bey & Champagnat, 2022; Pereira 
et al., 2020; Shrestha et al., 2022). Primary data about students’ programming process 
were collected from Thonny logs they submitted in two midterm exams. The Thonny 
was chosen because it is a Python IDE that logs user actions and generates logs that 
contain information about students’ actions in the IDE during the exam task-solving, 
for example, runs, error messages, and pastes with timestamps. The sample was formed 
using a voluntary response sampling strategy (Murairwa, 2015). Specifically, the sample 
included all students enrolled in the introductory programming course who submitted 
complete logs and provided responses to the question regarding their programming ex-
perience. The course, sample, data collection, and data analysis are described in more 
detail in the following sections.

3.1. Overview of the Course

The study uses data from the fall 2022 course “Computer Programming.” The course 
takes place at the University of Tartu every year and is mainly aimed at students who 
study Informatics as a major. In addition, there are groups for students with other majors, 
such as Computer Engineering, Mathematics, Mathematical Statistics, Physics, Chem-
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istry, and Materials Science. The course is also open to students who want to take it as 
an elective course. It is a Python course that lasts for 16 weeks and uses a flipped class-
room approach, which means that students study course materials about new topics at 
home before solving programming tasks and answering test questions. After that, they 
deal with the same topic in a practical session. During the course, they use Python IDE 
Thonny, designed to learn and teach programming (Annamaa, 2015). Its goal is to offer 
an IDE that has options that beginners especially need. Among others, its functionality 
allows users to debug their programs in detail. In addition, it has valuable options for 
teachers and researchers. It has logging functionality, which saves user actions during 
the programming process. These actions (with timestamps) include editing the program 
text whereas pasted text is differentiated from typed text, executing programs, interact-
ing with standard streams (stdin, stdout, stderr), loading and saving files, using stepping 
commands, etc (Annamaa, 2015). Users can also replay the programming process.

Fig. 1. Programming task 1 of the first midterm exam (translated).
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The course includes three exams for testing students’ knowledge: two midterm ex-
ams and a final exam. The first midterm exam is in the 6th week and covers the following 
main topics: variables, conditional statements, functions, loops, and basic data exchange 
with files. The second midterm exam is in the 12th week, focusing on the following main 
topics: primary data structures as lists, tuples, sets, and dictionaries; nested loops; and 
data exchange with files. The final exam covers all previous topics, recursion, and intro-
duction to object-oriented programming. The exams consist of two parts: a test focusing 
on code reading and programming tasks for testing code writing skills. Help resources 
are not allowed during the test but can be used while solving programming tasks. In the 
midterm exam, students have 90 minutes to complete both parts, whereas the time limit 
in the final exam is 180 minutes, and it must be completed in the classroom. Students can 
get 20 points for programming tasks in each midterm exam. In the final exam, they must 
solve three programming tasks to get a maximum of 30 points. This study uses data from 
the second part of the two midterm exams that examine code writing skills. Students 
solve two larger programming tasks and must use Thonny to do them. They must create 
two programs based on the instructions. In addition, it is compulsory to submit the logs 
the environment generates. The reliability of different exam variants was ensured by 
designing the tasks with the same components, type of input, file content structure, and 
other requirements, as well as using a shared assessment matrix. An example of the first 
programming task of the first midterm exam is shown in Fig. 1.

3.2. Data Collection and Sample

Primary data were collected from Thonny logs students submitted in both midterm 
exams. Using a program, the following data were extracted from each student’s logs 
about the programming process and added to a CSV file: starting time, ending time, 
number of runs, number of error messages, number of syntax errors, number of char-
acters at first run for each program, and number of characters at log submission for 
each program. Then, it was checked whether the logs contained information about the 
entire solving time and did not contain information about activities before starting the 
exam programming tasks. The total complete logs received were 301 for the first and 
275 for the second midterm exam. In addition to the log information, each student’s 
midterm exam score was added. Research (O’Malley & Aggarwal, 2020; Vihavainen 
et al., 2014b) has shown that prior programming experience impacts performance in 
introductory programming courses, which was also considered. A survey was used at 
the beginning of the course to determine if they had previous programming experience. 
This research used one multiple choice question which offered the following options: 
1) I have never tried to program, 2) I have tried to program a little but did not make 
much progress, 3) I can create simple programs, and 4) I have good programming skills, 
and this course does not give me much new knowledge. For this study, the results were 
coded according to programming experience in two categories: those with previous 
experience with programming as non-beginners (students who marked options 2, 3, or 
4 in the question) and those with none as beginners (students who marked option 1 in 
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the question – I have never tried to program). There were 79 beginners and 222 non-
beginners in the first midterm exam sample and 72 beginners and 203 non-beginners 
in the second midterm exam sample. The datasets incorporated data on students who 
had complete logs from both midterm exams to facilitate movement analysis from one 
cluster to another. There were 233 such students. Of these, 61 were beginners, and 172 
were non-beginners.

Four features were included in the analysis using the data collected from logs. The 
importance of the features is based on previous studies, as referenced in Table 1, which 
played a crucial role in the selection process. Additionally, during the cluster analysis, 
more features were included in the testing phase, such as tasks solving time and number 
of debugging instances. Further details about the process can be found in the data anal-
ysis section. The final features were as follows: the number of runs and error messages, 
the percentage of syntax errors, and the percentage of characters in programs at the first 
run (the proportion of the total number of characters at the end of task solutions). The 
percentage of typed characters at the first run is an essential feature in programming 
not included in previous research that analyzed differences in exam scores of different 
solver types separately among beginners and non-beginners. This may be a key feature 
as it indicates the late onset of debugging during programming, which can be related 
to exam scores. The number of runs and error messages are incorporated because the 
high number of these is potentially related to the high number of trial-error attempts 

Table 1
The description of the features and references to previous studies

Feature Description References

Number of 
runs

The total number of 
program executions 
while solving two 
midterm exam 
programming tasks.

Hosseini et al., 2014; Jadud, 2006; Meier et al., 2020; Sharma 
et al., 2018; Tabanao et al., 2011

Number of 
error messages

The total number of error 
messages while solving 
two midterm exam 
programming tasks. 

Carter et al., 2015; Jadud, 2006; Price et al., 2020; Tabanao et al., 
2011; Watson et al., 2013

Percentage 
of typed 
characters at 
the first run

The percentage of typed 
characters at the first 
run considering two 
programming tasks.

Late first execution indicates a late start of debugging while 
programming (Meier & Lepp, 2023). In other previous works, 
the volume of written code between executions or submissions 
(Allevato & Edwards, 2010; Bey et al., 2019; Bey & Champagnat, 
2022; Pereira et al., 2020; Pereira et al., 2021; Sharma et al., 2018; 
Zhang et al., 2022) and the executions-editing sequences (Carter & 
Hundhausen, 2017) have been considered, but not the percentage of 
typed characters at the first run.

Percentage of 
syntax errors

The percentage of syntax 
errors out of the total 
number of errors that 
occurred while solving 
two midterm exam 
programming tasks.

Use of syntax errors ratio: Bey et al., 2019; Estey & Coady, 2016; 
Pereira et al., 2019; Pereira et al., 2020; Pereira et al., 2021.
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as an ineffective behavior (Sharma et al., 2018). Still, they can also be related to more 
frequent testing, and it might be ineffective behavior if students do not debug their pro-
grams at all (Carter & Hundhausen, 2017). Adding features related to potentially inef-
fective behavior (many error messages, high percentage of syntax errors) also helps to 
see which other features are usually accompanied by these behaviors. The descriptions 
of the features used and references to previous studies are presented in Table 1.

3.3. Data Analysis

The data were analyzed using the statistical software IBM SPSS Statistics version 28. 
The first step was to standardize the scores of features to the same scale. The z-score was 
used for this purpose. Then, both datasets (one for the first midterm exam and another 
for the second midterm exam) were divided into two parts based on students’ previous 
programming experience: beginners (students who marked option 1 in the survey – I 
have never tried to program) and non-beginners (students who marked options 2, 3, or 
4 in the survey). Each dataset was analyzed separately using k-means cluster analysis 
with a maximum of 10 iterations. The purpose was to group students based on features 
in programming. As k-means cluster analysis typically involves experimenting with dif-
ferent numbers of clusters to determine the most meaningful solution in the context of 
the research (Jain, 2010), we tried cluster models with three, four, five, six, and seven 
clusters. It also involved different features in programming beyond the final ones. The 
analysis showed that the most meaningful solution was with four clusters and features 
described in Table 1. Each cluster of all datasets (beginners and non-beginners at the 
first and the second midterm exam) was analyzed to find descriptive statistics of the first 
and the second midterm exam scores. A Kruskal-Wallis test was conducted to evaluate 
the existence of any significant differences between clusters. The Mann-Whitney U test 
was employed to compare different features pairwise. An Alluvial diagram was used to 
present the moves between clusters.

4. Results

The descriptive statistics of midterm exam scores among beginners and non-beginners 
are presented in Table 2. 

Table 2
Descriptive statistics of midterm exam scores

Programming Experience Midterm Exam Students Mean Standard Deviation Min Max

Beginners 1 79 (26.2%) 11.87 4.77 1 20
2 72 (26.2%) 14.27 5.58 1 20

Non-beginners 1 222 (73.8%) 15.92 4.33 2 20
2 203 (73.8%) 17.37 4.00 0 20
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4.1. Solver Types 

To address the first research question, we categorized different types of solvers into 
distinct clusters. Among beginners and non-beginners, we identified clusters with char-
acteristics similar to the whole group clusters identified in the previous analysis based 
on the first midterm exam programming process (Meier & Lepp, 2023). For this reason, 
we used the same names to label the clusters: 1) Frequent pressers of the run button, 2) 
Receivers of syntax errors, 3) Balanced solvers, and 4) Late starters of the program ex-
ecution. The beginner and non-beginner clusters for the first and second midterm exams 
are shown in Fig. 2.

Next, we examine the main differences between the clusters, considering both mid-
term exams, beginners and non-beginners. The following observations can be made: 
“Frequent pressers of the run button” differ from others in that they execute programs 
more than others and receive more error messages (in all cases, p < 0.001). “Receivers 
of syntax errors” can be characterized by the highest ratio of syntax errors (in all cases, 
p < 0.05). In the case of beginners are also characterized by a low number of executions 
(in all cases except for “Late starters of the program execution” in the first midterm 
exam, p < 0.05). “Balanced solvers” have a below-average rate in all features. The non-
beginners among “Balanced solvers” are also characterized by a low ratio of syntax er-
rors (for both midterm exams with “Frequent pressers of the run button” and “Receivers 

Fig. 2. Clusters at the midterm exams.
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of syntax errors” p < 0.001). “Late starters of the program execution” had written the 
highest ratio of program characters by the time of first execution (in all cases, p < 0.001). 
In the case of non-beginners, they are also characterized by a low number of executions 
(first midterm exam: in all cases, p < 0.001; second midterm exam: in all cases except 
“Balanced solvers,” p < 0.05).

The distances between cluster centers are different for beginners and non-beginners. 
For beginners, the most remarkable distance is between “Frequent pressers of the run 
button” and “Receivers of syntax errors” (the first midterm exam 3.904, the second mid-
term exam 3.801). The shortest distance is between “Balanced solvers” and “Late start-
ers of the program execution” (the first midterm exam 2.066, the second midterm exam 
1.779). For non-beginners, the most remarkable distance is between “Frequent pressers 
of the run button” and “Late starters of the program execution” (the first midterm exam 
3.545, the second midterm exam 4.089), while the shortest distance is between “Receiv-
ers of syntax errors” and “Balanced solvers” (the first midterm exam 1.933, the second 
midterm exam 1.979).

4.2. Differences in Midterm Exam Scores of Solver Types

To answer the second research question, we compared midterm exam scores between 
clusters by separately analyzing beginners’ and non-beginners’ scores on both midterm 
exams. The descriptive statistics are presented in Table 3 for beginners and Table 4 
for non-beginners. Fig. 3 shows the distributions of the scores by clusters. The Mann-
Whitney U test analysis showed that if beginners and non-beginners are considered 
separately, there are no statistically significant differences between the clusters’ first 
midterm exam scores. However, in the second midterm exam scores, there are statisti-
cally significant differences between clusters among both beginners and non-beginners. 
The second midterm exam score of the beginners who belong to the “Balanced solvers” 
cluster was statistically significantly higher than that of the clusters “Receivers of syn-
tax errors” (U = 58, p < 0.05) and “Late starters of the program execution” (U = 129, 
p < 0.05). Regarding the non-beginners, however, “Balanced solvers” had a statisti-

Table 3
Descriptive statistics of beginners’ midterm exam scores

Cluster Midterm Exam Students Mean Standard Deviation Min Max

Frequent pressers of the 
run button

1 13 (16.5%) 12.04 3.74 7.5 19
2 20 (27.8%) 14.68 4.64 7 20

Receivers of syntax 
errors

1   9 (11.4%) 10.61 6.25 1 20
2   9 (12.5%) 10.61 6.84 1 20

Balanced solvers 1 43 (54.4%) 12.71 4.54 5 20
2 26 (36.1%) 16.83 4.19 6.5 20

Late starters of the 
program execution

1 14 (17.7%)   9.93 5.05 3.5 19.5
2 17 (23.6%) 11.82 6.09 3.5 20
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cally significantly better second midterm exam score than “Frequent pressers of the run 
button” (U = 1058; p < 0.001) and “Late starters of the program execution” (U = 251; 
p < 0.05). “Receivers of syntax errors” also performed better than “Frequent pressers 
of the run button” (U = 698; p < 0.001) and “Late starters of the program execution” 
(U = 165; p < 0.05). 

Table 4
Descriptive statistics of non-beginners’ midterm exam scores

Cluster Midterm Exam Students Mean Standard Deviation Min Max

Frequent pressers of the 
run button

1 54 (24.3%) 15.79 4.11 3.5 20
2 62 (30.5%) 15.44 4.17 4.5 20

Receivers of syntax 
errors

1 53 (23.9%) 14.82 4.90 3.5 20
2 51 (25.1%) 18.51 3.24 3.5 20

Balanced solvers 1 84 (37.8%) 16.55 4.03 4.5 20
2 79 (38.9%) 18.63 2.77 6.5 20

Late starters of the 
program execution

1 31 (14%) 16.35 4.29 2 20
2 11 (5.4%) 14 7.07 0 20

Fig. 3. Distributions of midterm exam scores by clusters.
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4.3. Persistence of Solver Types

To answer the third research question, we identified students’ transitions from one clus-
ter to another. Two Alluvial diagrams show beginners’ and non-beginners’ moves be-
tween clusters (see Fig. 4 and Fig. 5). The movement of beginners between clusters is 
shown in Fig. 4. Of 61 beginners, 37 (61%) moved to other groups, while 24 (39%) 
stayed the same. More details about beginners’ moves between clusters are presented 
in Table 5.

The proportion of moves of non-beginners is similar to that of beginners. The move-
ment of non-beginners between clusters is shown in Fig. 5. Of 172 non-beginners, 101 
(59%) moved to other groups, while 71 (41%) stayed in the same one. More details 
about non-beginners’ moves between clusters are presented in Table 6.

Fig. 4. Beginners’ moves from one cluster to another.

Table 5
Beginners’ moves between clusters from midterm exam 1 (rows) to midterm exam 2 (columns)

Cluster 1 
(n = 17)

Cluster 2 
(n = 8)

Cluster 3 
(n = 20)

Cluster 4 
(n = 16)

Cluster 1. Frequent pressers of the run button (n = 7)   3 (43%) 1 (14%)   1 (14%) 2 (29%)

Cluster 2. Receivers of syntax errors (n = 6)   0 (0%) 1 (17%)   3 (50%) 2 (33%)

Cluster 3. Balanced solvers (n = 36) 11 (31%) 5 (14%) 14 (39%) 6 (17%)

Cluster 4. Late starters of the program execution (n = 12) 3 (25%) 1 (8%)   2 (17%) 6 (50%)

Gray background signifies staying in the same cluster, and numbers in bold have the largest transition 
probability
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5. Discussion

This study aimed to identify different types of solvers among beginners and non-begin-
ners based on the analysis of the programming process. Solvers can be divided into four 
groups by behavior patterns in programming based on the following behavior features in 
programming: the number of runs, the number of error messages, the percentage of char-
acters in programs at the first run, and the percentage of syntax errors. The first group is 
characterized by many runs and error messages, the second by a large proportion of syn-
tax errors, the third by a balance in all features, and the fourth by a late start with runs. 
It aligns with previous studies that revealed differences in students’ behavior patterns in 

Fig. 5. Non-beginners’ moves from one cluster to another.

Table 6
Non-beginners’ moves between clusters from midterm exam 1 (rows)  

to midterm exam 2 (columns)

Cluster 1 
(n = 53)

Cluster 2 
(n = 43)

Cluster 3 
(n = 66)

Cluster 4 
(n = 10)

Cluster 1. Frequent pressers of the run button (n = 44) 24 (55%)   9 (20%)   9 (20%) 2 (5%)

Cluster 2. Receivers of syntax errors (n = 36) 14 (39%)   8 (22%) 13 (36%) 1 (3%)

Cluster 3. Balanced solvers (n = 69) 14 (20%) 19 (28%) 34 (49%) 2 (3%)

Cluster 4. Late starters of the program execution (n = 23) 1 (4%)   7 (30%) 10 (43%) 5 (22%)

Gray background signifies staying in the same cluster, and numbers in bold have the largest transition 
probability.
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programming (Blikstein, 2011; Hosseini et al., 2014; Vihavainen et al., 2014a). The first 
group that had a large number of runs and error messages probably made a lot of trial-
error attempts, as has been mentioned by other authors as well (Blikstein, 2011; Jem-
mali et al., 2020; Hosseini et al., 2014; Michaeli & Romeike, 2019). The fourth group 
executed the program for the first time when a larger portion of the program was written. 
Previous research has also noted that some students add code incrementally, whereas 
others write a large amount of code and then improve it (Hossein et al., 2014). Late 
starting with program execution may also be related to using more copying and pasting. 
Research has shown that beginners who use more copying and pasting might need more 
code examples, while others need more detailed instructions (Blikstein, 2011). It should 
be emphasized that studying the different solver types is important because students with 
different programming styles need different support strategies (Blikstein, 2011). 

The characteristics of the groups described above apply to both beginners and non-
beginners. Similar overall trends can be explained by the fact that all students studied in 
the first programming course and were not very experienced. At the same time, there are 
nuances in which the clusters of beginners differ from non-beginners. In both midterm 
exams, beginners had, unlike non-beginners, a combination of a higher proportion of 
syntax errors and a lower amount of runs (second group). Among the non-beginners, a 
lower amount of runs was accompanied by a late start of the program execution (fourth 
group). It may indicate that beginners have more trouble with syntax errors, and some 
try to write programs almost without debugging. Among the non-beginners, a small 
number of runs is characteristic of those who write a large part of the program before 
the first execution. It aligns with previous research that has highlighted difficulties with 
syntax errors as a problem, especially in the first weeks of the course (Denny et al., 2012; 
Marceau et al., 2011), while it has also been observed that sometimes beginners code 
without checking if the program is correct (Ardimento et al., 2022). 

The study also aimed to investigate if there were differences in both midterm exam 
scores between different solver types. Unlike in the second midterm exam, the groups 
had no statistically significant differences in the first midterm exam scores. Among 
beginners, “Frequent pressers of the run button” and “Balanced solvers” performed 
better than others, but no statistically significant differences exist. It is possible that 
students’ programming styles are not sufficiently formed at the beginning of the course 
and do not yet show clear tendencies. Another possible reason is that the tasks are still 
relatively easy in the first midterm exam, so it is possible to solve the assignments 
even with inefficient styles. At the same time, there were significant differences in the 
second midterm exam scores. It can also indicate that skill gaps are increasing during 
the course. This suggests that those with difficulties need support, especially early in 
the course. It is supported by Zhang et al. (2022), revealing that students with good 
debugging skills performed better on the first exam, and the difference even increased 
on the second exam.

The beginners’ and non-beginners’ results on the second midterm exam show that the 
late start of the program execution characterizes one group of the students whose mid-
term exam scores are lower. In addition, both the high proportion of syntax errors and the 
late start of the program execution combined with a small number of runs are patterns 
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that tend to be related to lower performance. This is essential knowledge, mainly because 
weaker students have often been associated with a large number of trial-error-attempts 
(Bey & Champagnat, 2022; Heinonen et al., 2014; Hosseini et al., 2014; Pereira et al., 
2020; Tabanao et al., 2011), but there are other kinds of weaker students as well who do 
not use program execution enough. Also, research has found that students who fail ex-
ams struggle with editing programs that have never been executed (Carter & Hundhaus-
en, 2017). This is primarily an indication of insufficient debugging skills. Some students 
try to write as much of the program as possible without running it or using a debugger 
if necessary. This finding shows the need to pay more attention to program debugging at 
the beginning of the course and use teaching techniques that help improve these skills. 
To suggest to run the program when some parts are written is also helpful. Teaching as-
sistants can also demonstrate how to write programs using executions regularly during 
the programming process. It is an essential focus in the first weeks, which helps find 
mistakes more efficiently and improves the understanding of how programs work. 

Interestingly, for beginners, a higher proportion of syntax errors is correlated with 
worse performance, whereas for non-beginners it characterizes one of the better-per-
forming groups. This result needs further investigation, but it indicates that not only 
the proportion of syntax errors but also the error correction skills and speed play a role 
(Pereira et al., 2020; Watson et al., 2013; Zhang et al., 2022). So, it is possible that the 
group of non-beginners who receive proportionally more syntax errors may be able to 
correct them quickly. Bey and Champagnat (2022) identified a group of students who 
were good at designing solutions but made syntactical errors because of hurrying. The 
fact that two distinct groups of non-beginners achieve significantly better results than the 
two other groups shows that no single pattern characterizes successful students. In teach-
ing, it is also necessary to consider that students can work effectively in different ways.

The study also aimed to determine how persistent the solver types are over time 
among beginners and non-beginners. The results show that groups are not persistent 
during the first programming course – more students moved to another group than 
stayed in the same one, both among beginners and non-beginners. The reasons why 
students change groups need further research. Further investigation is also required to 
determine which students stay in the same group and which change groups and how it 
is related to course outcomes. Previous research with different features has shown that 
changes over time indicate better results (Blikstein et al., 2014). At the same time, a 
study based on other various features concluded that those who perform worse change 
the cluster (Bey et al., 2019).

In conclusion, it is essential knowledge that the late start of the program execution 
combined with a small number of runs are patterns that tend to be related to lower per-
formance. It is crucial from this point of view that lower performance is often associated 
with many trial-error-attempts (Bey & Champagnat, 2022; Pereira et al., 2020). This 
finding shows the need to focus on lower-performing students who don’t debug their 
programs during the writing process enough or not at all. The limited use of debugging 
is also mentioned in other research (Ardimento et al., 2022; Liu & Paquette, 2023). This 
paper also adds knowledge that solver types are not persistent during the first program-
ming course among beginners and non-beginners alike.
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6. Conclusion

Our research demonstrated that solvers can be divided into groups based on behavioral 
patterns, which are similar among beginners and non-beginners. We also found patterns 
that indicate better performance and observed that some groups can perform equally 
well despite differences, which shows diversity. It was also revealed that solver types 
were not persistent during the first programming course. An important result was de-
tecting some characteristics that tend to be related to lower performance. In particular, 
we would like to point out a newly found feature – the late start of the program execu-
tion, which is related to lower outcomes among beginners and non-beginners. It is well-
known that lower outcomes can often be related to the number of errors. The research 
now revealed another type of low-performer besides error-related patterns. Answers to 
the research questions are presented in sections 4.1, 4.2, and 4.3.

These results help teachers to consider specific details and diversity in students’ 
styles. In the context of the result of this study, an essential recommendation is to teach 
how to program in such a way that executing the programs is a natural part of the pro-
gramming process. Information about different behavior patterns also gives teachers 
helpful information for proposing and using different support strategies. Namely, it 
can sometimes be helpful to pay attention to the differences in solver types generally 
in practical sessions. Teaching assistants can also explain to students that those who 
execute programs the first time when a large part of the program is written tend to get 
lower grades. It is also possible to give different exercises to those who struggle with 
syntax errors or never execute programs. Some beginners, however, need more exam-
ples, and others need more detailed instructions. In addition, the revealed patterns are 
helpful for students to reflect on their programming styles and get valuable information, 
which helps them notice their behavior patterns and improve their skills. The findings 
also show the need to pay more attention to debugging in the first weeks of the course. 
It helps decrease the number of students who try to program without executing or leave 
it quite late to run programs for the first time. In addition, using debuggers incorporated 
into programming environments is also very helpful for students in finding mistakes. 
These kinds of tools are not only helpful for debugging itself but also for learning how 
programs work and in which order commands are executed. Introducing and encourag-
ing the use of these kinds of tools is especially essential in large courses because these 
enable students to be more thorough and independent as they work with programs and 
engage with their mistakes. It would also be helpful if teaching assistants focused more 
on explaining in the first few weeks that even short programs consist of parts. Maybe 
offer exercises that require writing programs incrementally. They can also teach by 
demonstrating how to write programs using regular executions.

It is also necessary to point out some limitations. The data were collected in one uni-
versity from a course where most students study Informatics as a major. Although there 
were groups from other major fields, the results may somewhat differ with a broader 
diversity of fields. Obtaining information from logs allows detailed information about 
activities in the programming environment but not outside. To get a broader perspec-
tive in the future, it may be helpful to incorporate additional information from other 
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environments they use during the course, such as the learning management system. As 
future work, the persistence of solver types and their correlation to course outcomes 
certainly needs a more detailed investigation with a larger sample. It is essential to map 
the tendencies that are more or less efficient during the course. It would be important 
to identify the types of moves between groups associated with higher and lower exam 
scores and develop practical applications of this knowledge to improve teaching. It is 
also not clear whether solver types are impersistent only during the first programming 
course or during a longer period as well. Another possible direction for future research 
is to examine the lower-performing solver types more closely.
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