
Informatics in Education, 2025, Vol. 24, No. 1, 199–221
© 2025 Vilnius University
DOI: 10.15388/infedu.2025.07

199

Clusters of Solvers’ Behavior Patterns Among
Beginners and Non-beginners and Their Changes
During an Introductory Programming Course

Heidi TAVETER, Marina LEPP
Institute of Computer Science, University of Tartu, Estonia
e-mail: heidi.taveter@ut.ee, marina.lepp@ut.ee

Received: October 2024

Abstract. Learning programming has become increasingly popular, with learners from diverse
backgrounds and experiences requiring different support. Programming-process analysis helps to
identify solver types and needs for assistance. The study examined students’ behavior patterns in
programming among beginners and non-beginners to identify solver types, assess midterm exam
scores’ differences, and evaluate the types’ persistence. Data from Thonny logs were collected
during introductory programming exams in 2022, with sample sizes of 301 and 275. Cluster
analysis revealed four solver types: many runs and errors, a large proportion of syntax errors,
balance in all features, and a late start with executions. Significant score differences were found
in the second midterm exam. The late start of executions characterizes one group with lower
performance, and types are impersistent during the first programming course. The findings un-
derscore the importance of teaching debugging early and the need to teach how to program using
regular executions.

Keywords: behavior features in programming, behavior patterns in programming, programming-
process analysis, clustering, introductory programming.

1. Introduction

Analysis of the programming process has become one of the ways to get an overview
of how students program and identify what kind of help they need in introductory in
programming (Blikstein, 2011; Hosseini et al., 2014; Vihavainen et al., 2014a). For ex-
ample, some students add code incrementally and test it regularly. However, some write
a large part of the code and then start improving it (Hosseini et al., 2014; Meier et al.,
2020). The use of trial-error attempts has also been mentioned separately (Blikstein,
2011; Jemmali et al., 2020; Hosseini et al., 2014; Michaeli & Romeike, 2019). The lat-
ter has been associated with beginners (Blikstein, 2011). In the context of this article,
beginners are those who have never tried to program. In addition, beginners have been

H. Taveter, M. Lepp200

found to use a lot of copying and pasting (Blikstein, 2011; Vihavainen et al., 2014a).
It has also been emphasized that students use copying and pasting in the first weeks of
the course (Vihavainen et al. 2014a), which suggests that there are changes in behavior
features in programming during the course. It has also been observed that finding syntax
errors is difficult for beginners, especially early in the course (Denny et al., 2012; Mar-
ceau et al., 2011). These results show that when studying learner behavior features and
patterns in programming, it is necessary to consider previous programming experience
and determine how behavior features and patterns in programming change during the
course. In this article, a behavior pattern in programming refers to how a group conducts
itself throughout the programming process.

2. Literature Review

2.1. Challenges in Teaching Programming in Introductory Courses

As the number of people learning programming has grown, this poses several chal-
lenges for introductory courses (Luxton-Reilly et al., 2018; Santos et al., 2013; Utting
et al., 2013). High dropout and failure rates in introductory programming courses are
also continuously problematic (Luxton-Reilly, 2016; Medeiros et al., 2018; Watson
& Li, 2014). Therefore, there is a need for further course development, and it is es-
sential to consider and pay more attention to the higher diversity of students (Becker
et al., 2019; O’Malley & Aggarwal, 2020; Santos et al., 2013). Students in introductory
courses have different levels of previous programming experience, and some do not
have any knowledge of the field. Research has shown that students with prior program-
ming experience perform better in introductory courses (Ateeq et al., 2014; Porter &
Zingaro, 2014; Veerasamy et al., 2018). It has been emphasized that prior experience
influences, particularly, the outcome of the first programming course during the studies
(Holden & Weeden, 2003).

From other perspectives, the very beginning of programming education is also es-
sential. Porter and Zingaro (2014) found that the results of weeks three and four are
most predictive of final grades. This observation is supported by other works, which
also indicate a correlation between the first weeks’ results and final grades (Ahadi et al.,
2014; Estey & Coady, 2016). Some papers have pointed out that difficulties with syn-
tax errors are also most common at the beginning of the course (Denny et al., 2012;
Marceau et al., 2011), and the skills to find and fix syntax errors are related to the final
grade (Zhang et al., 2022). The study showed that students who were good at debug-
ging achieved better results on the first exam, and the difference in results increased in
the next exam. It aligns with Watson et al. (2013), who found that the time spent fixing
errors predicts students’ performance. Therefore, spotting students who struggle with
syntax errors is essential. Smith and Rixner (2019) recommend providing them with
targeted instructions. Research has also revealed a need to focus on teaching debugging
at the beginning of the course (Zhang et al., 2022). It is a valuable skill that helps fix
errors and understand the sequence of the program commands. Teaching debugging is

Clusters of Solvers’ Behavior Patterns Among Beginners and Non-beginners ... 201

essential, especially since research has shown that beginners usually do not use debug-
ging (Ardimento et al., 2022; Liu & Paquette, 2023). They also make changes without
checking the correctness (Ardimento et al., 2022).

2.2. Programming-Process Analysis

Analysis of the programming process has been used in various ways to understand and
support programming education. One option is to focus on beginners to understand what
differentiates their programming from those who have some previous experience. For
example, using an environment that records every keystroke event, it has been found
that beginners copy-paste a lot in the beginning when they learn to program (Vihavainen
et al., 2014a). This is in line with Blikstein’s (2011) work, which was also based on key-
stroke recording, which found that beginners use more copying, pasting, and customiza-
tion of the code obtained from external sources. It has also been found that the workload
of beginners is significantly higher when solving programming tasks than those with
some prior programming experience (Vihavainen et al., 2014b), and they use many trial-
and-error attempts (Blikstein, 2011). Another observation has been that students’ pro-
gramming styles vary, and the trial approach characterizes only some of them (Hosseini
et al., 2014). Research has shown that some execute the program very late, for the first
time, after most of it has been written (Meier et al., 2020). Paying attention to differ-
ences in programming styles is essential because students with different programming
styles need different support strategies (Blikstein, 2011).

Another important direction in the analysis of the programming process is to iden-
tify the students who have difficulties and the characteristics of the programming pro-
cess that predict higher or lower final exam scores. Based on a snapshot analysis or
automatic detection of programming behavior, it was found that weaker students try
different options at random without thorough thinking (Heinonen et al., 2014) and are
likely to make many submissions in a short time (Bey et al., 2019). At the same time,
students with higher results make more changes between submissions (Pereira et al.,
2020) and spend more time between compilations (Tabanao et al., 2011). However,
another research found that the size of code updates is unrelated to course outcomes
(Blikstein et al., 2014). Estey and Coady (2016) revealed that at-risk students are char-
acterized by a combination of low compilation rates and repeated hint usage. Research
has also shown that students with better performance deal with errors better (Pereira
et al., 2020; Zhang et al., 2022), and the level of debugging skills is the key to good
results (Zhang et al., 2022). It is in line with other work based on log data, which re-
vealed that error-resolving time is essential in predicting student outcomes (Watson
et al., 2013). Errors as a component related to students’ performance have been taken
into account in various studies (Bey et al., 2019; Carter et al., 2015; Estey & Coady,
2016; Jadud, 2006; Pereira et al., 2020; Pereira et al., 2021; Price et al., 2020; Watson
et al., 2013; Watson & Li, 2014). Attention has also been paid to syntax errors, and it
has been found that effective dealing with these is related to better final results (Pereira
et al., 2020; Zhang et al., 2022). Fewer errors have also been associated with better

H. Taveter, M. Lepp202

progress (Tabanao et al., 2011). In addition, it has been pointed out that students with
better results tend to edit programs with recent runtime errors. Still, students who fail
exams deal more with syntax errors or edit programs that have never been executed
(Carter & Hundhausen, 2017).

In addition to those mentioned above, further behavior features in programming have
been associated with students’ performance. Shrestha et al. (2022) used keystroke-level
analysis. They revealed, focusing on the length of pauses, that the students with fewer
medium (3–10 minutes) or long pauses tended to perform better in the exam. More
frequent use of medium or long pauses may indicate that students needed to search for
additional materials. The greater use of copy-pasting is also associated with lower exam
scores (Pereira et al., 2020). It has also been revealed that debugging mode is used most
frequently by students with average results (Carter & Hundhausen, 2017). At the same
time, students with the best results use the debugger less often, and it is similar to stu-
dents with worse outcomes. Some studies have focused on changes in student program-
ming patterns throughout the course. For example, it has been found that students who
have more changes in the code update patterns (code update pattern means here a com-
bination of code update size and frequency) during the course have better final outcomes
(Blikstein et al., 2014). This is supported by Estey and Coady (2016), showing that at-
risk students’ behavior features in programming appear at the beginning of the semester,
and they continue to exhibit the same behavior throughout the semester.

2.3. Student Profiling

Researchers have created student profiles based on various programming process char-
acteristics, which describe the different aspects of the process. One way is to use de-
tailed data, including code size increases, decreases, and plateaus. For example, Blik-
stein (2011) divided students into three main groups based on detailed program process
data: Copy and pasters, Mixed-mode, and Self-sufficient. Copy and pasters use exist-
ing programs as a starting point, and they have long plateaus as they look for sample
programs for copying from instruction materials or their previous work. This coding
strategy is characteristic of beginners, and others are more common among non-begin-
ners. Self-sufficient students do not have drastic increases in the number of characters
because of copying. They have two main periods combined: linear growth of character
count, dealing with errors, and long plateaus without browsing materials. Mixed mode
is the combination of the other two. Other research (Hosseini et al., 2014) also used de-
tailed programming data, including increases, decreases, and plateaus in an introductory
course, and divided students as follows: Builders, Massagers, Reducers, and Strugglers.
Builders work gradually, Massagers do the same but have long plateaus as well, Reduc-
ers reduce code already written, and Strugglers struggle to pass any tests. This kind of
grouping gives a good overview of students’ differences in programming, and analyzing
their performance would provide additional essential information.

Some studies use a grouping of students to analyze further how behavior patterns
in programming relate to success. In one study, students were divided into three groups

Clusters of Solvers’ Behavior Patterns Among Beginners and Non-beginners ... 203

based on the number of unit test runs, and the following groups were discerned: intel-
lects, thinkers, and probers (Sharma et al., 2018). The intellects had the lowest number
of runs, the longest time between executions, and the highest number of code changes.
The probers had the highest number of runs, the shortest time between executions, and
the lowest number of code changes. The research showed that intellects had the high-
est and the probers the lowest unit test success. We can guess that the probers tend to
use a trial-and-error approach. The students with the best results had the lowest number
of runs, but it is unclear if some students have more runs but perform well. However,
some previous research results are contradicting this. For example, the research that uses
code snapshots of every execution and analyzes them with machine-learning techniques
shows that the group of students who took consistently smaller steps in moving towards
the solution performed better than those who, at some point, suddenly transformed a
semi-working program into the correct solution (Piech et al., 2012).

The number of submissions is also a behavior feature used in student profiling. Based
on cluster analysis, Bey et al. (2019) differentiated three groups. Cluster 1 made more
submissions than the others, but Cluster 2 spent more time before submitting and made
more changes than the other clusters. Cluster 3 made fewer submissions than Cluster 1,
spent less time before submitting, and made fewer changes than Cluster 2. Cluster 3 had
the largest number of high performers. It is in line with other research that used cluster
analysis based on specific features, which included the number of submissions, the vol-
ume of code modifications, and the time between submissions and syntactic correctness
(Bey & Champagnat, 2022). They concluded that better-performing students designed
the complete solution at the beginning and then submitted and started to fix errors. At
the same time, students who wrote only some lines of code and then started compiling
had lower final scores in the course. Among others, they found a cluster representing stu-
dents who are good at designing the global solution but make syntactical errors because
they hurry to get an assessment result. Analyzing submissions with other features gives
valuable insights into students’ behavior patterns but leaves out the process between
submissions.

In addition, there are studies where one component of the code construction pat-
tern has been used as the basis for grouping with cluster analysis. For example, a study
monitored pauses during the programming process (Shrestha et al., 2022). They ana-
lyzed pauses of different lengths during programming, dividing pauses as follows: micro
(2–15 seconds), short (16–180 seconds), medium (3–10 minutes), and long (above 10
minutes). Two groups were identified based on pause lengths, concluding that the stu-
dents who took relatively more micro pauses performed better than those with a higher
share of short, medium, and long pauses.

Efforts have also been made to incorporate many different behavior features. A study
used large datasets and varied behavior features in programming to look inside the pro-
gramming process and its context during the course (Pereira et al., 2020). The analysis
revealed three clusters based on multiple features. In addition to the usual features re-
lated to errors, correctness, use of copy-paste, changes between submissions, etc., they
incorporated features that characterize longer processes, for example, IDE (integrated
development environment) usage time, number of logins during the four weeks, and

H. Taveter, M. Lepp204

amount of time between the first line of code and assignment deadline. The clusters also
differed in the final grade (Pereira et al., 2020). The groups were designated as A, B,
and C. A included the most high-performing students, B was in the middle, and students
in cluster C performed the worst. The well-performing students have fewer errors, deal
with them better, need less time for corrections, make more changes between submis-
sions, and use less copy-pasting. They have also stronger engagement with the course
and spend more time in the programming environment.

Some analyses have been done about movements between clusters. For example,
researchers analyzed students’ movement between the clusters during the three weeks of
the course and revealed that low performers had more frequent cluster changes (Bey &
Champagnat, 2022). It contradicts other research, which revealed that higher-perform-
ing students have more changes in behavior patterns in programming during the course
(Blikstein et al., 2014; Estey & Coady, 2016). In conclusion, it can be said that students’
behavior features have been used in different ways for profiling. However, some gaps
and contradictory results are related to the graduality of creating programs (small steps
vs designing the bulk of the solution at first) and changes in behavior patterns.

2.4. Research Problem

Dividing students into groups has been employed to identify behavioral patterns in pro-
gramming that are characteristic of higher-performing students. For instance, a study
utilizing cluster analysis to form groups revealed that students with better performance
correct errors more quickly, encounter fewer repeated issues with the same errors, and
make fewer syntax errors (Pereira et al., 2020). These findings are supported by earlier
research conducted by Vihavainen (2013) and Zhang et al. (2022). Additionally, high-
er-performing students tend to copy and paste less frequently, as Pereira et al. (2020)
highlighted. This observation aligns with the findings of Shrestha et al. (2022), another
cluster analysis-based study, which demonstrated that students who take fewer long
pauses (exceeding 10 minutes) achieve better results. Long pauses were associated with
searching for external resources or materials. Furthermore, strong debugging skills have
also been identified as a key characteristic of better-performing students (Zhang et al.,
2022). There is limited research exploring that debugging skills may also be associated
with the timing of the first code execution. Specifically, a study has shown that students
who write a substantial portion of their code before the first execution tend to achieve
lower exam scores than those who execute their code earlier (Meier & Lepp, 2023).
However, whether this finding applies to students in introductory courses with no prior
programming experience remains unknown. There have been some attempts to inves-
tigate changes in behavior patterns in programming during a course, but the results are
conflicting (e.g., Bey et al., 2019; Estey & Coady, 2016). Building on previous research,
the question remains: Which behavior patterns in programming characterize beginners,
how are these patterns related to performance, and how do these patterns and tendencies
differ from those of non-beginners? Focusing on beginners is critical because researchers
have pointed to differences in coding between beginners and non-beginners (Blikstein,

Clusters of Solvers’ Behavior Patterns Among Beginners and Non-beginners ... 205

2011; Vihavainen et al., 2014b). Furthermore, many challenges beginners face manifest
early in the course (Denny et al., 2012; Marceau et al., 2011). Gaining a deeper under-
standing of beginners’ ineffective behavior patterns in programming can help educators
focus on improving these skills. It is also essential to monitor changes in thes behavior
patterns over the course duration. This provides guidance on the key aspects to empha-
size when teaching both at the start of the course and in subsequent stages. Considering
the above, the following research questions were posed:

What types of solvers can be differentiated from the analysis of the programming ●
process (of beginners and non-beginners)?
Are there statistically significant differences in the midterm exam scores of differ- ●
ent solver types (beginners and non-beginners)?
How persistent are the solver types among beginners and non-beginners over ●
time?

3. Methodology

This study aimed to examine students’ behavior patterns in programming among begin-
ners and non-beginners to identify solver types, assess midterm exam scores’ differences
between solver types, and evaluate the types’ persistence. Therefore, cluster analysis,
which represents a quantitative approach, was used in this study. A quantitative approach
was chosen because it is based on objective measurement and allows the detection of
patterns and trends using data and the generalization of findings to a broader popu-
lation (Dehalwar & Sharma 2024). Clustering can reveal hidden patterns in datasets,
and it is common in previous studies to use the k-means algorithm to detect student
profiles based on programming-process data (e.g., Bey & Champagnat, 2022; Pereira
et al., 2020; Shrestha et al., 2022). Primary data about students’ programming process
were collected from Thonny logs they submitted in two midterm exams. The Thonny
was chosen because it is a Python IDE that logs user actions and generates logs that
contain information about students’ actions in the IDE during the exam task-solving,
for example, runs, error messages, and pastes with timestamps. The sample was formed
using a voluntary response sampling strategy (Murairwa, 2015). Specifically, the sample
included all students enrolled in the introductory programming course who submitted
complete logs and provided responses to the question regarding their programming ex-
perience. The course, sample, data collection, and data analysis are described in more
detail in the following sections.

3.1. Overview of the Course

The study uses data from the fall 2022 course “Computer Programming.” The course
takes place at the University of Tartu every year and is mainly aimed at students who
study Informatics as a major. In addition, there are groups for students with other majors,
such as Computer Engineering, Mathematics, Mathematical Statistics, Physics, Chem-

H. Taveter, M. Lepp206

istry, and Materials Science. The course is also open to students who want to take it as
an elective course. It is a Python course that lasts for 16 weeks and uses a flipped class-
room approach, which means that students study course materials about new topics at
home before solving programming tasks and answering test questions. After that, they
deal with the same topic in a practical session. During the course, they use Python IDE
Thonny, designed to learn and teach programming (Annamaa, 2015). Its goal is to offer
an IDE that has options that beginners especially need. Among others, its functionality
allows users to debug their programs in detail. In addition, it has valuable options for
teachers and researchers. It has logging functionality, which saves user actions during
the programming process. These actions (with timestamps) include editing the program
text whereas pasted text is differentiated from typed text, executing programs, interact-
ing with standard streams (stdin, stdout, stderr), loading and saving files, using stepping
commands, etc (Annamaa, 2015). Users can also replay the programming process.

Fig. 1. Programming task 1 of the first midterm exam (translated).

Clusters of Solvers’ Behavior Patterns Among Beginners and Non-beginners ... 207

The course includes three exams for testing students’ knowledge: two midterm ex-
ams and a final exam. The first midterm exam is in the 6th week and covers the following
main topics: variables, conditional statements, functions, loops, and basic data exchange
with files. The second midterm exam is in the 12th week, focusing on the following main
topics: primary data structures as lists, tuples, sets, and dictionaries; nested loops; and
data exchange with files. The final exam covers all previous topics, recursion, and intro-
duction to object-oriented programming. The exams consist of two parts: a test focusing
on code reading and programming tasks for testing code writing skills. Help resources
are not allowed during the test but can be used while solving programming tasks. In the
midterm exam, students have 90 minutes to complete both parts, whereas the time limit
in the final exam is 180 minutes, and it must be completed in the classroom. Students can
get 20 points for programming tasks in each midterm exam. In the final exam, they must
solve three programming tasks to get a maximum of 30 points. This study uses data from
the second part of the two midterm exams that examine code writing skills. Students
solve two larger programming tasks and must use Thonny to do them. They must create
two programs based on the instructions. In addition, it is compulsory to submit the logs
the environment generates. The reliability of different exam variants was ensured by
designing the tasks with the same components, type of input, file content structure, and
other requirements, as well as using a shared assessment matrix. An example of the first
programming task of the first midterm exam is shown in Fig. 1.

3.2. Data Collection and Sample

Primary data were collected from Thonny logs students submitted in both midterm
exams. Using a program, the following data were extracted from each student’s logs
about the programming process and added to a CSV file: starting time, ending time,
number of runs, number of error messages, number of syntax errors, number of char-
acters at first run for each program, and number of characters at log submission for
each program. Then, it was checked whether the logs contained information about the
entire solving time and did not contain information about activities before starting the
exam programming tasks. The total complete logs received were 301 for the first and
275 for the second midterm exam. In addition to the log information, each student’s
midterm exam score was added. Research (O’Malley & Aggarwal, 2020; Vihavainen
et al., 2014b) has shown that prior programming experience impacts performance in
introductory programming courses, which was also considered. A survey was used at
the beginning of the course to determine if they had previous programming experience.
This research used one multiple choice question which offered the following options:
1) I have never tried to program, 2) I have tried to program a little but did not make
much progress, 3) I can create simple programs, and 4) I have good programming skills,
and this course does not give me much new knowledge. For this study, the results were
coded according to programming experience in two categories: those with previous
experience with programming as non-beginners (students who marked options 2, 3, or
4 in the question) and those with none as beginners (students who marked option 1 in

H. Taveter, M. Lepp208

the question – I have never tried to program). There were 79 beginners and 222 non-
beginners in the first midterm exam sample and 72 beginners and 203 non-beginners
in the second midterm exam sample. The datasets incorporated data on students who
had complete logs from both midterm exams to facilitate movement analysis from one
cluster to another. There were 233 such students. Of these, 61 were beginners, and 172
were non-beginners.

Four features were included in the analysis using the data collected from logs. The
importance of the features is based on previous studies, as referenced in Table 1, which
played a crucial role in the selection process. Additionally, during the cluster analysis,
more features were included in the testing phase, such as tasks solving time and number
of debugging instances. Further details about the process can be found in the data anal-
ysis section. The final features were as follows: the number of runs and error messages,
the percentage of syntax errors, and the percentage of characters in programs at the first
run (the proportion of the total number of characters at the end of task solutions). The
percentage of typed characters at the first run is an essential feature in programming
not included in previous research that analyzed differences in exam scores of different
solver types separately among beginners and non-beginners. This may be a key feature
as it indicates the late onset of debugging during programming, which can be related
to exam scores. The number of runs and error messages are incorporated because the
high number of these is potentially related to the high number of trial-error attempts

Table 1
The description of the features and references to previous studies

Feature Description References

Number of
runs

The total number of
program executions
while solving two
midterm exam
programming tasks.

Hosseini et al., 2014; Jadud, 2006; Meier et al., 2020; Sharma
et al., 2018; Tabanao et al., 2011

Number of
error messages

The total number of error
messages while solving
two midterm exam
programming tasks.

Carter et al., 2015; Jadud, 2006; Price et al., 2020; Tabanao et al.,
2011; Watson et al., 2013

Percentage
of typed
characters at
the first run

The percentage of typed
characters at the first
run considering two
programming tasks.

Late first execution indicates a late start of debugging while
programming (Meier & Lepp, 2023). In other previous works,
the volume of written code between executions or submissions
(Allevato & Edwards, 2010; Bey et al., 2019; Bey & Champagnat,
2022; Pereira et al., 2020; Pereira et al., 2021; Sharma et al., 2018;
Zhang et al., 2022) and the executions-editing sequences (Carter &
Hundhausen, 2017) have been considered, but not the percentage of
typed characters at the first run.

Percentage of
syntax errors

The percentage of syntax
errors out of the total
number of errors that
occurred while solving
two midterm exam
programming tasks.

Use of syntax errors ratio: Bey et al., 2019; Estey & Coady, 2016;
Pereira et al., 2019; Pereira et al., 2020; Pereira et al., 2021.

Clusters of Solvers’ Behavior Patterns Among Beginners and Non-beginners ... 209

as an ineffective behavior (Sharma et al., 2018). Still, they can also be related to more
frequent testing, and it might be ineffective behavior if students do not debug their pro-
grams at all (Carter & Hundhausen, 2017). Adding features related to potentially inef-
fective behavior (many error messages, high percentage of syntax errors) also helps to
see which other features are usually accompanied by these behaviors. The descriptions
of the features used and references to previous studies are presented in Table 1.

3.3. Data Analysis

The data were analyzed using the statistical software IBM SPSS Statistics version 28.
The first step was to standardize the scores of features to the same scale. The z-score was
used for this purpose. Then, both datasets (one for the first midterm exam and another
for the second midterm exam) were divided into two parts based on students’ previous
programming experience: beginners (students who marked option 1 in the survey – I
have never tried to program) and non-beginners (students who marked options 2, 3, or
4 in the survey). Each dataset was analyzed separately using k-means cluster analysis
with a maximum of 10 iterations. The purpose was to group students based on features
in programming. As k-means cluster analysis typically involves experimenting with dif-
ferent numbers of clusters to determine the most meaningful solution in the context of
the research (Jain, 2010), we tried cluster models with three, four, five, six, and seven
clusters. It also involved different features in programming beyond the final ones. The
analysis showed that the most meaningful solution was with four clusters and features
described in Table 1. Each cluster of all datasets (beginners and non-beginners at the
first and the second midterm exam) was analyzed to find descriptive statistics of the first
and the second midterm exam scores. A Kruskal-Wallis test was conducted to evaluate
the existence of any significant differences between clusters. The Mann-Whitney U test
was employed to compare different features pairwise. An Alluvial diagram was used to
present the moves between clusters.

4. Results

The descriptive statistics of midterm exam scores among beginners and non-beginners
are presented in Table 2.

Table 2
Descriptive statistics of midterm exam scores

Programming Experience Midterm Exam Students Mean Standard Deviation Min Max

Beginners 1 79 (26.2%) 11.87 4.77 1 20
2 72 (26.2%) 14.27 5.58 1 20

Non-beginners 1 222 (73.8%) 15.92 4.33 2 20
2 203 (73.8%) 17.37 4.00 0 20

H. Taveter, M. Lepp210

4.1. Solver Types

To address the first research question, we categorized different types of solvers into
distinct clusters. Among beginners and non-beginners, we identified clusters with char-
acteristics similar to the whole group clusters identified in the previous analysis based
on the first midterm exam programming process (Meier & Lepp, 2023). For this reason,
we used the same names to label the clusters: 1) Frequent pressers of the run button, 2)
Receivers of syntax errors, 3) Balanced solvers, and 4) Late starters of the program ex-
ecution. The beginner and non-beginner clusters for the first and second midterm exams
are shown in Fig. 2.

Next, we examine the main differences between the clusters, considering both mid-
term exams, beginners and non-beginners. The following observations can be made:
“Frequent pressers of the run button” differ from others in that they execute programs
more than others and receive more error messages (in all cases, p < 0.001). “Receivers
of syntax errors” can be characterized by the highest ratio of syntax errors (in all cases,
p < 0.05). In the case of beginners are also characterized by a low number of executions
(in all cases except for “Late starters of the program execution” in the first midterm
exam, p < 0.05). “Balanced solvers” have a below-average rate in all features. The non-
beginners among “Balanced solvers” are also characterized by a low ratio of syntax er-
rors (for both midterm exams with “Frequent pressers of the run button” and “Receivers

Fig. 2. Clusters at the midterm exams.

Clusters of Solvers’ Behavior Patterns Among Beginners and Non-beginners ... 211

of syntax errors” p < 0.001). “Late starters of the program execution” had written the
highest ratio of program characters by the time of first execution (in all cases, p < 0.001).
In the case of non-beginners, they are also characterized by a low number of executions
(first midterm exam: in all cases, p < 0.001; second midterm exam: in all cases except
“Balanced solvers,” p < 0.05).

The distances between cluster centers are different for beginners and non-beginners.
For beginners, the most remarkable distance is between “Frequent pressers of the run
button” and “Receivers of syntax errors” (the first midterm exam 3.904, the second mid-
term exam 3.801). The shortest distance is between “Balanced solvers” and “Late start-
ers of the program execution” (the first midterm exam 2.066, the second midterm exam
1.779). For non-beginners, the most remarkable distance is between “Frequent pressers
of the run button” and “Late starters of the program execution” (the first midterm exam
3.545, the second midterm exam 4.089), while the shortest distance is between “Receiv-
ers of syntax errors” and “Balanced solvers” (the first midterm exam 1.933, the second
midterm exam 1.979).

4.2. Differences in Midterm Exam Scores of Solver Types

To answer the second research question, we compared midterm exam scores between
clusters by separately analyzing beginners’ and non-beginners’ scores on both midterm
exams. The descriptive statistics are presented in Table 3 for beginners and Table 4
for non-beginners. Fig. 3 shows the distributions of the scores by clusters. The Mann-
Whitney U test analysis showed that if beginners and non-beginners are considered
separately, there are no statistically significant differences between the clusters’ first
midterm exam scores. However, in the second midterm exam scores, there are statisti-
cally significant differences between clusters among both beginners and non-beginners.
The second midterm exam score of the beginners who belong to the “Balanced solvers”
cluster was statistically significantly higher than that of the clusters “Receivers of syn-
tax errors” (U = 58, p < 0.05) and “Late starters of the program execution” (U = 129,
p < 0.05). Regarding the non-beginners, however, “Balanced solvers” had a statisti-

Table 3
Descriptive statistics of beginners’ midterm exam scores

Cluster Midterm Exam Students Mean Standard Deviation Min Max

Frequent pressers of the
run button

1 13 (16.5%) 12.04 3.74 7.5 19
2 20 (27.8%) 14.68 4.64 7 20

Receivers of syntax
errors

1 9 (11.4%) 10.61 6.25 1 20
2 9 (12.5%) 10.61 6.84 1 20

Balanced solvers 1 43 (54.4%) 12.71 4.54 5 20
2 26 (36.1%) 16.83 4.19 6.5 20

Late starters of the
program execution

1 14 (17.7%) 9.93 5.05 3.5 19.5
2 17 (23.6%) 11.82 6.09 3.5 20

H. Taveter, M. Lepp212

cally significantly better second midterm exam score than “Frequent pressers of the run
button” (U = 1058; p < 0.001) and “Late starters of the program execution” (U = 251;
p < 0.05). “Receivers of syntax errors” also performed better than “Frequent pressers
of the run button” (U = 698; p < 0.001) and “Late starters of the program execution”
(U = 165; p < 0.05).

Table 4
Descriptive statistics of non-beginners’ midterm exam scores

Cluster Midterm Exam Students Mean Standard Deviation Min Max

Frequent pressers of the
run button

1 54 (24.3%) 15.79 4.11 3.5 20
2 62 (30.5%) 15.44 4.17 4.5 20

Receivers of syntax
errors

1 53 (23.9%) 14.82 4.90 3.5 20
2 51 (25.1%) 18.51 3.24 3.5 20

Balanced solvers 1 84 (37.8%) 16.55 4.03 4.5 20
2 79 (38.9%) 18.63 2.77 6.5 20

Late starters of the
program execution

1 31 (14%) 16.35 4.29 2 20
2 11 (5.4%) 14 7.07 0 20

Fig. 3. Distributions of midterm exam scores by clusters.

Clusters of Solvers’ Behavior Patterns Among Beginners and Non-beginners ... 213

4.3. Persistence of Solver Types

To answer the third research question, we identified students’ transitions from one clus-
ter to another. Two Alluvial diagrams show beginners’ and non-beginners’ moves be-
tween clusters (see Fig. 4 and Fig. 5). The movement of beginners between clusters is
shown in Fig. 4. Of 61 beginners, 37 (61%) moved to other groups, while 24 (39%)
stayed the same. More details about beginners’ moves between clusters are presented
in Table 5.

The proportion of moves of non-beginners is similar to that of beginners. The move-
ment of non-beginners between clusters is shown in Fig. 5. Of 172 non-beginners, 101
(59%) moved to other groups, while 71 (41%) stayed in the same one. More details
about non-beginners’ moves between clusters are presented in Table 6.

Fig. 4. Beginners’ moves from one cluster to another.

Table 5
Beginners’ moves between clusters from midterm exam 1 (rows) to midterm exam 2 (columns)

Cluster 1
(n = 17)

Cluster 2
(n = 8)

Cluster 3
(n = 20)

Cluster 4
(n = 16)

Cluster 1. Frequent pressers of the run button (n = 7) 3 (43%) 1 (14%) 1 (14%) 2 (29%)

Cluster 2. Receivers of syntax errors (n = 6) 0 (0%) 1 (17%) 3 (50%) 2 (33%)

Cluster 3. Balanced solvers (n = 36) 11 (31%) 5 (14%) 14 (39%) 6 (17%)

Cluster 4. Late starters of the program execution (n = 12) 3 (25%) 1 (8%) 2 (17%) 6 (50%)

Gray background signifies staying in the same cluster, and numbers in bold have the largest transition
probability

H. Taveter, M. Lepp214

5. Discussion

This study aimed to identify different types of solvers among beginners and non-begin-
ners based on the analysis of the programming process. Solvers can be divided into four
groups by behavior patterns in programming based on the following behavior features in
programming: the number of runs, the number of error messages, the percentage of char-
acters in programs at the first run, and the percentage of syntax errors. The first group is
characterized by many runs and error messages, the second by a large proportion of syn-
tax errors, the third by a balance in all features, and the fourth by a late start with runs.
It aligns with previous studies that revealed differences in students’ behavior patterns in

Fig. 5. Non-beginners’ moves from one cluster to another.

Table 6
Non-beginners’ moves between clusters from midterm exam 1 (rows)

to midterm exam 2 (columns)

Cluster 1
(n = 53)

Cluster 2
(n = 43)

Cluster 3
(n = 66)

Cluster 4
(n = 10)

Cluster 1. Frequent pressers of the run button (n = 44) 24 (55%) 9 (20%) 9 (20%) 2 (5%)

Cluster 2. Receivers of syntax errors (n = 36) 14 (39%) 8 (22%) 13 (36%) 1 (3%)

Cluster 3. Balanced solvers (n = 69) 14 (20%) 19 (28%) 34 (49%) 2 (3%)

Cluster 4. Late starters of the program execution (n = 23) 1 (4%) 7 (30%) 10 (43%) 5 (22%)

Gray background signifies staying in the same cluster, and numbers in bold have the largest transition
probability.

Clusters of Solvers’ Behavior Patterns Among Beginners and Non-beginners ... 215

programming (Blikstein, 2011; Hosseini et al., 2014; Vihavainen et al., 2014a). The first
group that had a large number of runs and error messages probably made a lot of trial-
error attempts, as has been mentioned by other authors as well (Blikstein, 2011; Jem-
mali et al., 2020; Hosseini et al., 2014; Michaeli & Romeike, 2019). The fourth group
executed the program for the first time when a larger portion of the program was written.
Previous research has also noted that some students add code incrementally, whereas
others write a large amount of code and then improve it (Hossein et al., 2014). Late
starting with program execution may also be related to using more copying and pasting.
Research has shown that beginners who use more copying and pasting might need more
code examples, while others need more detailed instructions (Blikstein, 2011). It should
be emphasized that studying the different solver types is important because students with
different programming styles need different support strategies (Blikstein, 2011).

The characteristics of the groups described above apply to both beginners and non-
beginners. Similar overall trends can be explained by the fact that all students studied in
the first programming course and were not very experienced. At the same time, there are
nuances in which the clusters of beginners differ from non-beginners. In both midterm
exams, beginners had, unlike non-beginners, a combination of a higher proportion of
syntax errors and a lower amount of runs (second group). Among the non-beginners, a
lower amount of runs was accompanied by a late start of the program execution (fourth
group). It may indicate that beginners have more trouble with syntax errors, and some
try to write programs almost without debugging. Among the non-beginners, a small
number of runs is characteristic of those who write a large part of the program before
the first execution. It aligns with previous research that has highlighted difficulties with
syntax errors as a problem, especially in the first weeks of the course (Denny et al., 2012;
Marceau et al., 2011), while it has also been observed that sometimes beginners code
without checking if the program is correct (Ardimento et al., 2022).

The study also aimed to investigate if there were differences in both midterm exam
scores between different solver types. Unlike in the second midterm exam, the groups
had no statistically significant differences in the first midterm exam scores. Among
beginners, “Frequent pressers of the run button” and “Balanced solvers” performed
better than others, but no statistically significant differences exist. It is possible that
students’ programming styles are not sufficiently formed at the beginning of the course
and do not yet show clear tendencies. Another possible reason is that the tasks are still
relatively easy in the first midterm exam, so it is possible to solve the assignments
even with inefficient styles. At the same time, there were significant differences in the
second midterm exam scores. It can also indicate that skill gaps are increasing during
the course. This suggests that those with difficulties need support, especially early in
the course. It is supported by Zhang et al. (2022), revealing that students with good
debugging skills performed better on the first exam, and the difference even increased
on the second exam.

The beginners’ and non-beginners’ results on the second midterm exam show that the
late start of the program execution characterizes one group of the students whose mid-
term exam scores are lower. In addition, both the high proportion of syntax errors and the
late start of the program execution combined with a small number of runs are patterns

H. Taveter, M. Lepp216

that tend to be related to lower performance. This is essential knowledge, mainly because
weaker students have often been associated with a large number of trial-error-attempts
(Bey & Champagnat, 2022; Heinonen et al., 2014; Hosseini et al., 2014; Pereira et al.,
2020; Tabanao et al., 2011), but there are other kinds of weaker students as well who do
not use program execution enough. Also, research has found that students who fail ex-
ams struggle with editing programs that have never been executed (Carter & Hundhaus-
en, 2017). This is primarily an indication of insufficient debugging skills. Some students
try to write as much of the program as possible without running it or using a debugger
if necessary. This finding shows the need to pay more attention to program debugging at
the beginning of the course and use teaching techniques that help improve these skills.
To suggest to run the program when some parts are written is also helpful. Teaching as-
sistants can also demonstrate how to write programs using executions regularly during
the programming process. It is an essential focus in the first weeks, which helps find
mistakes more efficiently and improves the understanding of how programs work.

Interestingly, for beginners, a higher proportion of syntax errors is correlated with
worse performance, whereas for non-beginners it characterizes one of the better-per-
forming groups. This result needs further investigation, but it indicates that not only
the proportion of syntax errors but also the error correction skills and speed play a role
(Pereira et al., 2020; Watson et al., 2013; Zhang et al., 2022). So, it is possible that the
group of non-beginners who receive proportionally more syntax errors may be able to
correct them quickly. Bey and Champagnat (2022) identified a group of students who
were good at designing solutions but made syntactical errors because of hurrying. The
fact that two distinct groups of non-beginners achieve significantly better results than the
two other groups shows that no single pattern characterizes successful students. In teach-
ing, it is also necessary to consider that students can work effectively in different ways.

The study also aimed to determine how persistent the solver types are over time
among beginners and non-beginners. The results show that groups are not persistent
during the first programming course – more students moved to another group than
stayed in the same one, both among beginners and non-beginners. The reasons why
students change groups need further research. Further investigation is also required to
determine which students stay in the same group and which change groups and how it
is related to course outcomes. Previous research with different features has shown that
changes over time indicate better results (Blikstein et al., 2014). At the same time, a
study based on other various features concluded that those who perform worse change
the cluster (Bey et al., 2019).

In conclusion, it is essential knowledge that the late start of the program execution
combined with a small number of runs are patterns that tend to be related to lower per-
formance. It is crucial from this point of view that lower performance is often associated
with many trial-error-attempts (Bey & Champagnat, 2022; Pereira et al., 2020). This
finding shows the need to focus on lower-performing students who don’t debug their
programs during the writing process enough or not at all. The limited use of debugging
is also mentioned in other research (Ardimento et al., 2022; Liu & Paquette, 2023). This
paper also adds knowledge that solver types are not persistent during the first program-
ming course among beginners and non-beginners alike.

Clusters of Solvers’ Behavior Patterns Among Beginners and Non-beginners ... 217

6. Conclusion

Our research demonstrated that solvers can be divided into groups based on behavioral
patterns, which are similar among beginners and non-beginners. We also found patterns
that indicate better performance and observed that some groups can perform equally
well despite differences, which shows diversity. It was also revealed that solver types
were not persistent during the first programming course. An important result was de-
tecting some characteristics that tend to be related to lower performance. In particular,
we would like to point out a newly found feature – the late start of the program execu-
tion, which is related to lower outcomes among beginners and non-beginners. It is well-
known that lower outcomes can often be related to the number of errors. The research
now revealed another type of low-performer besides error-related patterns. Answers to
the research questions are presented in sections 4.1, 4.2, and 4.3.

These results help teachers to consider specific details and diversity in students’
styles. In the context of the result of this study, an essential recommendation is to teach
how to program in such a way that executing the programs is a natural part of the pro-
gramming process. Information about different behavior patterns also gives teachers
helpful information for proposing and using different support strategies. Namely, it
can sometimes be helpful to pay attention to the differences in solver types generally
in practical sessions. Teaching assistants can also explain to students that those who
execute programs the first time when a large part of the program is written tend to get
lower grades. It is also possible to give different exercises to those who struggle with
syntax errors or never execute programs. Some beginners, however, need more exam-
ples, and others need more detailed instructions. In addition, the revealed patterns are
helpful for students to reflect on their programming styles and get valuable information,
which helps them notice their behavior patterns and improve their skills. The findings
also show the need to pay more attention to debugging in the first weeks of the course.
It helps decrease the number of students who try to program without executing or leave
it quite late to run programs for the first time. In addition, using debuggers incorporated
into programming environments is also very helpful for students in finding mistakes.
These kinds of tools are not only helpful for debugging itself but also for learning how
programs work and in which order commands are executed. Introducing and encourag-
ing the use of these kinds of tools is especially essential in large courses because these
enable students to be more thorough and independent as they work with programs and
engage with their mistakes. It would also be helpful if teaching assistants focused more
on explaining in the first few weeks that even short programs consist of parts. Maybe
offer exercises that require writing programs incrementally. They can also teach by
demonstrating how to write programs using regular executions.

It is also necessary to point out some limitations. The data were collected in one uni-
versity from a course where most students study Informatics as a major. Although there
were groups from other major fields, the results may somewhat differ with a broader
diversity of fields. Obtaining information from logs allows detailed information about
activities in the programming environment but not outside. To get a broader perspec-
tive in the future, it may be helpful to incorporate additional information from other

H. Taveter, M. Lepp218

environments they use during the course, such as the learning management system. As
future work, the persistence of solver types and their correlation to course outcomes
certainly needs a more detailed investigation with a larger sample. It is essential to map
the tendencies that are more or less efficient during the course. It would be important
to identify the types of moves between groups associated with higher and lower exam
scores and develop practical applications of this knowledge to improve teaching. It is
also not clear whether solver types are impersistent only during the first programming
course or during a longer period as well. Another possible direction for future research
is to examine the lower-performing solver types more closely.

Acknowledgments

This work was supported by the Estonian Research Council grant “Developing human-
centric digital solutions” (TEM-TA120).

References

Ahadi, A., Lister, R., & Teague, D. (2014). Falling Behind Early and Staying Behind When Learning to Pro-
gram. In PPIG (14). 2014_06_PPIG_AhadiListerAndTeague_EarlyIndicatorsOfSuccess_May30-
Time2200_PDF

Allevato, A., & Edwards, S. H. (2010). Discovering patterns in student activity on programming assign-
ments. In ASEE Southeastern Section Annual Conference and Meeting. Virginia Polytech. Inst. and
State Univ. Blacksburg, Virginia, 2010. http://se.asee.org/proceedings/ASEE2010/Papers/

PR2010All158.PDF

Annamaa, A. (2015). Introducing Thonny, a Python IDE for learning programming. In Proceedings of the
15th Koli Calling Conference on Computing Education Research. ACM. 117–121. https://doi.
org/10.1145/2828959.2828969

Ardimento, P., Bernardi, M. L., Cimitile, M., Redavid, D., & Ferilli, S. (2022). Understanding Coding Behav-
ior: An Incremental Process Mining Approach. Electronics, 11(3), 389. https://doi.org/10.3390/
electronics11030389

Ateeq, M., Habib, H., Umer, A., & Rehman, M. U. (2014). C++ or python? which one to begin with: A
learner’s perspective. In 2014 International Conference on Teaching and Learning in Computing and En-
gineering. IEEE. 64–69. https://doi.org/10.1109/latice.2014.20

Becker, B. A., & Quille, K. (2019). 50 years of CS1 at SIGCSE: A review of the evolution of introductory pro-
gramming education research. In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. ACM. 338–344. https://doi.org/10.1145/3287324.3287432

Bey, A., Pérez-Sanagustín, M., & Broisin, J. (2019). Unsupervised automatic detection of learners’ program-
ming behavior. In European Conference on Technology Enhanced Learning. Springer, Cham. 69–82.
https://doi.org/10.1007/978-3-030-29736-7_6

Bey, A., & Champagnat, R. (2022). Analyzing Student Programming Paths using Clustering and Process Min-
ing. In Proceedings of the 14th International Conference on Computer Supported Education. Scitepress.
76–84. https://doi.org/10.5220/0011077300003182

Blikstein, P. (2011). Using learning analytics to assess students’ behavior in open-ended programming tasks.
In Proceedings of the 1st International Conference on Learning Analytics and Knowledge. ACM. 110–116,
https://doi.org/10.1145/2090116.2090132

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014). Programming pluralism:
Using learning analytics to detect patterns in the learning of computer programming. Journal of the Learn-
ing Sciences, 23(4), 561–599. https://doi.org/10.1080/10508406.2014.954750

Carter, A. S., Hundhausen, C. D., & Adesope, O. (2015). The normalized programming state model: Predicting

Clusters of Solvers’ Behavior Patterns Among Beginners and Non-beginners ... 219

student performance in computing courses based on programming behavior. In Proceedings of the Eleventh
Annual International Conference on International Computing Education Research. 141–150. https://
doi.org/10.1145/2787622.2787710

Carter, A. S., & Hundhausen, C. D. (2017). Using programming process data to detect differences in students’
patterns of programming. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education. ACM. 105–110. https://doi.org/10.1145/3017680.3017785

Dehalwar, K., & Sharma, S. N. (2024). Exploring the Distinctions between Quantitative and Qualitative Re-
search Methods. Think India Journal, 27(1), 7–15.

Denny, P., Luxton-Reilly, A., & Tempero, E. (2012). All syntax errors are not equal. In Proceedings of the 17th
ACM Annual Conference on Innovation and Technology in Computer Science Education. ACM. 75–80.
https://doi.org/10.1145/2325296.2325318

Estey, A., & Coady, Y. (2016). Can interaction patterns with supplemental study tools predict outcomes in
CS1? In Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science
Education. ACM. 236–241. https://doi.org/10.1145/2899415.2899428

Holden, E., & Weeden, E. (2003). The impact of prior experience in an information technology programming
course sequence. In Proceedings of the 4th Conference on Information Technology Curriculum. ACM.
41–46. https://doi.org/10.1145/947121.947131

Hosseini, R., Vihavainen, A., & Brusilovsky, P. (2014). Exploring problem solving paths in a Java program-
ming course. In Proceedings of Psychology of Programming Interest Group Annual Conference, Brighton,
UK, 25–27 June 2014. 65–76.

Jadud, M. C. (2006). Methods and tools for exploring novice compilation behaviour. In Proceedings of
the Second International Workshop on Computing Education Research. ACM. 73–84. https://doi.
org/10.1145/1151588.1151600

Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651–666.
https://doi.org/10.1016/j.patrec.2009.09.011

Jemmali, C., Kleinman, E., Bunian, S., Almeda, M. V., Rowe, E., & El-Nasr, M. S. (2020). MAADS: Mixed-
methods approach for the analysis of debugging sequences of beginner programmers. In Proceedings of the
51st ACM Technical Symposium on Computer Science Education. Portland, OR, USA. 86–92. https://
doi.org/10.1145/3328778.3366824

Liu, Q., & Paquette, L. (2023). Using submission log data to investigate novice programmers’ employment of
debugging strategies. In LAK23: 13th International Learning Analytics and Knowledge Conference. ACM.
637–643. https://doi.org/10.1145/3576050.3576094

Luxton-Reilly, A. (2016). Learning to program is easy. In Proceedings of the 2016 ACM Conference
on Innovation and Technology in Computer Science Education. ACM. 284–289. https://doi.
org/10.1145/2899415.2899432

Luxton-Reilly, A., Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., ... & Szabo, C. (2018).
Introductory programming: a systematic literature review. In Proceedings Companion of the 23rd Annual
ACM Conference on Innovation and Technology in Computer Science Education, ITICSE. ACM. 55–106.
https://doi.org/10.1145/3293881.3295779

Marceau, G., Fisler, K., & Krishnamurthi, S. (2011). Measuring the effectiveness of error messages designed
for novice programmers. In Proceedings of the 42nd ACM Technical Symposium on Computer Science
Education. ACM. 499–504. https://doi.org/10.1145/1953163.1953308

Medeiros, R. P., Ramalho, G. L., & Falcão, T. P. (2018). A systematic literature review on teaching and learning
introductory programming in higher education. IEEE Transactions on Education, 62(2), 77–90. https://
doi.org/10.1109/te.2018.2864133

Meier, H., Tõnisson, E., Lepp, M., & Luik, P. (2020). Behaviour patterns of learners while solving a program-
ming task: An analysis of log files. In IEEE global engineering education conference (EDUCON). IEEE.
685–690. https://doi.org/10.1109/educon45650.2020.9125134

Meier, H., & Lepp, M. (2023). Clusters of Solvers’ Behavioral Patterns Based on Analysis of the Program-
ming Process. In 2023 IEEE Frontiers in Education Conference (FIE). IEEE. 1–6. https://doi.
org/10.1109/fie58773.2023.10343479

Michaeli, T., & Romeike, R. (2019). Current status and perspectives of debugging in the k12 classroom: A
qualitative study. In 2019 IEEE Global Engineering Education Conference (EDUCON). IEEE. 1030–1038.
https://doi.org/10.1109/educon.2019.8725282

Murairwa, S. (2015). Voluntary sampling design. International Journal of Advanced Research in Management
and Social Sciences, 4(2), 185–200.

H. Taveter, M. Lepp220

O’Malley, C., & Aggarwal, A. (2020). Evaluating the Use and Effectiveness of Ungraded Practice Problems
in an Introductory Programming Course. In Proceedings of the Twenty-Second Australasian Computing
Education Conference. ACM. 177–184. https://doi.org/10.1145/3373165.3373185

Pereira, F. D., Oliveira, E. H., Fernandes, D., & Cristea, A. (2019). Early performance prediction for CS1
course students using a combination of machine learning and an evolutionary algorithm. In 2019 IEEE 19th
International Conference on Advanced Learning Technologies (ICALT). 2161, 183–184. IEEE. https://
doi.org/10.1109/icalt.2019.00066

Pereira, F. D., Oliveira, E. H., Oliveira, D. B., Cristea, A. I., Carvalho, L. S., Fonseca, S. C., ... & Isotani,
S. (2020). Using learning analytics in the Amazonas: understanding students’ behaviour in introductory
programming. British journal of educational technology, 51(4), 955–972. https://doi.org/10.1111/
bjet.12953

Pereira, F. D., Fonseca, S. C., Oliveira, E. H., Cristea, A. I., Bellhäuser, H., Rodrigues, L., ... & Carval-
ho, L. S. (2021). Explaining Individual and Collective Programming Students’ Behavior by Interpre-
ting a Black-Box Predictive Model. IEEE Access, 9, 117097–117119. https://doi.org/10.1109/
access.2021.3105956

Piech, C., Sahami, M., Koller, D., Cooper, S., & Blikstein, P. (2012). Modeling how students learn to program.
In Proceedings of the 43rd ACM Technical Symposium on Computer Science Education. ACM. 153–160.
https://doi.org/10.1145/2157136.2157182

Porter, L., & Zingaro, D. (2014). Importance of early performance in CS1: two conflicting assessment stories.
In Proceedings of the 45th ACM Technical Symposium on Computer Science Education. ACM. 295–300.
https://doi.org/10.1145/2538862.2538912

Price, T. W., Hovemeyer, D., Rivers, K., Gao, G., Bart, A. C., Kazerouni, A. M., ... & Babcock, D. (2020).
Progsnap2: A flexible format for programming process data. In Proceedings of the 2020 ACM Confe-
rence on Innovation and Technology in Computer Science Education. ACM. 356–362. https://doi.
org/10.1145/3341525.3387373

Santos, Á., Gomes, A., & Mendes, A. (2013). A taxonomy of exercises to support individual learning paths
in initial programming learning. In 2013 IEEE Frontiers in Education Conference (FIE). IEEE. 87–93.
https://doi.org/10.1109/fie.2013.6684794

Sharma, K., Mangaroska, K., Trætteberg, H., Lee-Cultura, S., & Giannakos, M. (2018). Evidence for prog-
ramming strategies in university coding exercises. In Lifelong Technology-Enhanced Learning: 13th Eu-
ropean Conference on Technology Enhanced Learning, EC-TEL 2018, Leeds, UK, September 3–5, 2018,
Proceedings 13. Springer International Publishing. 326–339. https://doi.org/10.1007/978-3-319-
98572-5_25

Shrestha, R., Leinonen, J., Zavgorodniaia, A., Hellas, A., & Edwards, J. (2022). Pausing While Programming:
Insights From Keystroke Analysis. In 2022 IEEE/ACM 44th International Conference on Software Engi-
neering: Software Engineering Education and Training (ICSE-SEET). IEEE. 187–198. https://doi.
org/10.1109/icse-seet55299.2022.9794163

Tabanao, E. S., Rodrigo, M. M. T., & Jadud, M. C. (2011). Predicting at-risk novice Java programmers through
the analysis of online protocols. In Proceedings of the Seventh International Workshop on Computing
Education Research. ACM. 85–92. https://doi.org/10.1145/2016911.2016930

Utting, I., Tew, A. E., McCracken, M., Thomas, L., Bouvier, D., Frye, R., ... & Wilusz, T. (2013). A fresh look
at novice programmers’ performance and their teachers’ expectations. In Proceedings of the ITiCSE Wor-
king Group Reports Conference on Innovation and Technology in Computer Science Education-working
Group Reports. ACM. 15–32. https://doi.org/10.1145/2543882.2543884

Vihavainen, A. (2013). Predicting students’ performance in an introductory programming course using data
from students’ own programming process. In 2013 IEEE 13th International Conference on Advanced Le-
arning Technologies. IEEE. 498–499. https://doi.org/10.1109/icalt.2013.161

Vihavainen, A., Helminen, J., & Ihantola, P. (2014a). How novices tackle their first lines of code in an ide:
Analysis of programming session traces. In Proceedings of the 14th Koli Calling International Conference
on Computing Education Research. ACM. 109–116. https://doi.org/10.1145/2674683.2674692

Vihavainen, A., Luukkainen, M., & Ihantola, P. (2014b). Analysis of source code snapshot granularity le-
vels. In Proceedings of the 15th Annual Conference on Information Technology Education. ACM. 21–26.
https://doi.org/10.1145/2656450.2656473

Watson, C., Li, F. W., & Godwin, J. L. (2013). Predicting performance in an introductory programming course
by logging and analyzing student programming behavior. In 2013 IEEE 13th International Conference on
Advanced Learning Technologies. IEEE. 319–323. https://doi.org/10.1109/icalt.2013.99

Clusters of Solvers’ Behavior Patterns Among Beginners and Non-beginners ... 221

Watson, C., & Li, F. W. (2014). Failure rates in introductory programming revisited. In Proceedings of the
2014 Conference on Innovation & Technology in Computer Science Education. ACM. 39–44. https://
doi.org/10.1145/2591708.2591749

Zhang, Y., Paquette, L., Pinto, J. D., Liu, Q., & Fan, A. X. (2023). Combining latent profile analysis and prog-
ramming traces to understand novices’ differences in debugging. Education and Information Technologies,
28(4), 4673–4701. https://doi.org/10.1007/s10639-022-11343-7

H. Taveter is a junior lecturer in informatics and a doctoral student at the Institute of
Computer Science at the University of Tartu. Her research focuses on didactics of pro-
gramming, particularly analyzing the learning and teaching of programming by investi-
gating the programming process.

M. Lepp is an associate professor in informatics and the head of the chair of program-
ming languages and systems at the Institute of Computer Science at the University of
Tartu. Her current research interests are focused on AI in programming education, didac-
tics of programming, programming MOOCs, and assessment with computers.

