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Abstract. The assessment of computational thinking (CT) is crucial for improving pedagogical 
practice, identifying areas for improvement, and implementing efficient educational interven-
tions. Despite growing interest in CT in primary education, existing assessments often focus 
on specific dimensions, providing a fragmented understanding. In this research, a CT system of 
assessments for primary education was assembled and applied in a cross-sectional survey study 
with 1306 students from the 6th grade in a region of Spain. A three-way ANOVA and correlation 
analyses explored the effects of programming experience, educational context, and gender on 
CT skills and self-efficacy. Results highlighted a significant effect of programming experience 
but no significant effects of context or gender, alongside low overall correlations between CT 
skills and self-efficacy. These findings highlight the need to avoid focusing CT assessments on a 
single variable and support the combined use of multiple assessment instruments to measure CT 
accurately and effectively.

Keywords: computational thinking, system of assessment, cross-sectional study, primary educa-
tion, programming experience, self-efficacy, problem-solving skills.

1. Introduction

Computational thinking (CT) is a set of cognitive and practical skills that enable people 
to solve problems systematically and efficiently. These problem-solving skills include, 
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among other aspects, breaking down complex situations into more manageable parts, 
identifying patterns and structures within those situations, abstracting irrelevant details 
to focus on the essentials, and formulating algorithms that provide step-by-step solutions 
to these problems (Barr & Stephenson, 2011; Grover & Pea, 2013).

Seymour Papert, a pioneer in the view that children can develop procedural think-
ing through programming, particularly through his work with the LOGO language, in-
troduced the fundamental ideas of CT in his book Mindstorms (1980). In the eighties, 
those who foresaw the computer revolution made considerable efforts to integrate the 
so-called “computer literacy” – which includes understanding fundamental principles 
of computing – into teachers’ curricula and subsequently into primary and secondary 
education (García-Vera, 1994). In Spain, the institutional incorporation of computing in 
schools began with Project Atenea, promoted by the Ministry of Education and Science 
in the mid-decade. This project already pointed out that “the possibilities of languages 
like LOGO seem great” (Arango, 1985, p. 8). However, not all these initiatives suc-
ceeded in consolidating or translating into a significant change in students’ technological 
understanding (García-Vera, 1994).

Years later, at the beginning of the 21st century, the term “computational thinking” 
was popularized by Jeannette Wing (2006), who considered it a basic form of reasoning 
that should be taught alongside reading, writing, and arithmetic. Wing coined the term 
and defined it as a way of “solving problems, designing systems, and understanding 
human behavior by using fundamental concepts from computer science” (p. 33). Both 
Papert and Wing articulated the vision that everyone can benefit from learning to use 
principles, concepts, and approaches typical of computer science. Hence the importance 
of its integration into educational curricula.

Since then, the emergence of CT has marked a significant advance in awareness of 
the need to revisit some of these notions from the early educational stages, as reflected 
in the scientific production published since Wing’s article (Piazza & Mengual-Andrés, 
2020). This literature generally recognizes that CT is a set of cognitive processes mainly 
practiced in programming tasks, which favor new ways of thinking, communicating, and 
expressing ideas (Bers, 2021). However, these processes are also applicable to other dis-
ciplines (Barr & Stephenson, 2011; Mannila et al., 2014). This speaks to the importance 
of incorporating CT beyond the technological field, as it is a key skill for anyone aspir-
ing to fully participate in an increasingly technology-dependent and innovative society.

1.1. Integration of Computational Thinking in Educational Curricula

The integration of CT into school curricula has become a global priority. In America, 
the implementation of CT in primary schools is a growing concern. In the United 
States, the “Hour of Code” initiative was launched in 2013 by the non-profit orga-
nization Code.org (Code.org, 2024), aiming to disseminate computer science among 
all students. Additionally, in the United States, the “Computer Science for All” pro-
gram seeks to offer all students the opportunity to participate in computer science and 
CT education at K-12 levels by training teachers, expanding access to high-quality 
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teaching materials, and creating regional partnerships (Smith, 2016). In early primary 
education, the efficacy of brief intervention programs based on block-based program-
ming, such as Coding as Another Language-ScratchJr, has been examined (Yang et al., 
2025). In other countries, such as Chile, Argentina, Uruguay, and Brazil, changes are 
being introduced in national curricula to include computing or digital technology 
skills, with many emphasizing CT skills specifically (Bers et al., 2022; Brackmann 
et al., 2016). In the Asia-Pacific region, countries with a strong information and com-
munication technology industry, such as South Korea, Taiwan, Hong Kong, and China, 
have also implemented reforms to incorporate CT education from primary to second-
ary education, highlighting the importance of this skill in modern educational contexts 
(So et al., 2020). In Japan, programming and CT education became mandatory in 
elementary schools in 2020, as part of a national strategy to enhance students’ digital 
competencies and logical reasoning from an early age (Ohashi, 2024). Singapore has 
also made CT education compulsory at the upper primary level through the Code for 
Fun program, jointly developed by the Ministry of Education and the Infocomm Media 
Development Authority. Since 2020, all government and government-aided schools 
must offer this 10-hour program, which introduces students to computational thinking, 
coding, and emerging technologies such as artificial intelligence (Infocomm Media 
Development Authority, 2024).

In Europe, several countries, with Slovakia, Estonia, Finland, and the United King-
dom at the forefront, have reformed their compulsory education programs to include 
basic notions of computer science, as noted in the report Reviewing Computational 
Thinking in Compulsory Education by the Joint Research Centre of the European Com-
mission (Bocconi et al., 2022). In Spain, the formal integration of CT into the national 
curriculum came in 2022 with the Organic Law modifying the Organic Law of Educa-
tion (LOMLOE), which emphasizes its incorporation from the early years of schooling 
(Organic Law 3/2020, 2020) and includes CT as a key competency to be developed by 
students. The aim is to ensure a solid foundation for building the development of CT 
concepts and processes throughout compulsory education and beyond. In this process, 
the evaluation of CT emerges as a crucial element to determine the effectiveness of its 
integration and implementation in educational curricula (Weintrop et al., 2021).

1.2. Assessment of Computational Thinking

It is essential, therefore, to develop rigorous assessment tools that can accurately mea-
sure how students acquire and apply these skills in various contexts. To this end, in recent 
years, various methodologies and tools have been proposed to measure these abilities 
(Cutumisu et al., 2019; Poulakis & Politis, 2021; Román-González et al., 2019; Tang 
et al., 2020). However, there are few widely accepted assessments that measure these 
skills in primary education (Cutumisu et al., 2019), with a notable scarcity of validated 
instruments for assessing CT that are not associated with a specific learning environment 
or programming language (Zapata-Cáceres et al., 2024). Additionally, Kampylis et al. 
(2023) emphasize the need for further investigation to understand better how issues 
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related to gender, equity, and inclusion impact the quality of CT education integration. 
Moreover, given the multifaceted nature of CT, it is unlikely that a single instrument will 
be sufficient to record it exhaustively; instead, a system composed of several assessment 
instruments may be necessary (Grover, 2015; Guggemos et al., 2023). In this regard, 
Kampylis et al. (2023) highlight the importance of combining different approaches, such 
as self-reporting tools and practical tasks, to ensure consistency and comprehensiveness 
in the evaluation of CT. Therefore, it is necessary to develop comprehensive assessment 
systems specifically designed for primary education.

Given the variety of existing types of CT assessment, different classifications have 
been proposed to organize them according to their approach (Guggemos et al., 2023). 
One such classification is proposed by Román-González et al. (2019), where the fol-
lowing seven categories are identified: (1) diagnostic tools, that can be administered in 
pure pre-test situations or also post-test situations, to measure the level of CT aptitude; 
(2) summative tools, typically used as post-tests, intended to assess whether a person 
has gained sufficient content knowledge after instruction; (3) formative-iterative tools, 
which include tools aimed at providing usually automatic feedback to students, with 
the purpose of developing and improving their CT skills – this category mainly refers 
to CT skills acquired while programming since these tools are based on code diagnosis; 
(4) data mining tools, focused on the learning process and usually based on learning 
analytics, using data recorded on online educational platforms which teach CT through 
programming; (5) skill transfer tools, intended to assess how far students can transfer 
their CT skills across different types of problems, contexts and situations; (6) percep-
tion and attitude scales, aimed at assessing perceptions and attitudes about CT, but also 
related topics, such as computers, computer science, programming or digital literacy; (7) 
vocabulary assessment, which aims at measuring various elements and dimensions of 
CT using student verbal expressions.

Accordingly with this classification, assessment tools, which aim is measuring stu-
dent levels of CT aptitude, constitute the most appropriate means to determine these 
levels of proficiency in isolation, as they involve performance tests that do not require 
specific prior knowledge such as a particular programming language (Guggemos et al., 
2023). On the other hand, skill transfer tools, such as Bebras tasks (Dagienė et al., 2016), 
consist of real-life problems and, being independent of any learning environment, can 
also be administered to students without prior experience in the subject. Thirdly, percep-
tion and attitude scales, such as the self-assessment instrument Computational Thinking 
Scales (CTS) (Korkmaz et al., 2017), also allow for the isolated assessment of students’ 
cognitive ability and attitudes towards their CT skills and are suitable for large-scale as-
sessment (Sun et al., 2021a). These three types of tools have in common that they allow 
for the objective assessment and measurement of students’ CT skills without requiring 
prior knowledge or experience.

Recent systematic reviews support this multidimensional perspective. Rao and 
Bhagat (2024), after analyzing 360 studies, highlight the coexistence of diverse assess-
ment strategies – from self-reporting instruments to problem-solving tasks and automat-
ed tools – and emphasise that no single method can adequately capture the complexity 
of CT. Yeni et al. (2024) reach similar conclusions, noting that existing tools often pri-
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oritise attitudes or domain-specific outcomes over direct assessment of CT skills. While 
their emphases differ, both reviews highlight the limitations of using a single assessment 
approach and stress the importance of combining diverse tools to adequately evaluate 
CT in educational contexts.

1.3. Influential Factors in the Development of Computational Thinking

Research on students’ development of CT shows that several factors can influence the 
acquisition and refinement of these skills. Among these factors are previous program-
ming experience, which provides a solid foundation and familiarity with some basic 
concepts; gender, which may entail differences in access and motivation towards tech-
nological disciplines; and educational context, which ranges from teaching quality to 
available resources and institutional support. These factors are analyzed in greater de-
tail below.

Firstly, students’ prior programming experience can influence their self-efficacy and 
performance when solving CT skill transfer tasks. Specifically, previous studies have 
demonstrated positive associations between training or prior experience and levels of 
self-efficacy (Ineson et al., 2013; Prieto & Altmaier, 1994), which in turn positively 
influences performance (Honicke & Broadbent, 2016; Richardson et al., 2012). This re-
lationship aligns with findings from Gümüş et al. (2024), who measured middle school 
students’ digital literacy, programming self-efficacy, and CT self-efficacy using self-
reported scales. While self-reported measures capture participants’ perceptions of their 
skills, they may not always align with actual performance. Nonetheless, these percep-
tions play a critical role in shaping confidence and motivation, both of which are es-
sential for skill development. Therefore, students previously exposed to programming 
should show a higher level of competence and confidence in their abilities.

Secondly, differences between boys and girls in education and digital skills are a 
widely debated topic. Women are underrepresented when choosing a degree related to 
computer science, and stereotypes about who is good at CT and programming begin to 
manifest at an early age (Bers, 2021). Previous research points to disparities between 
perception and academic performance among boys and girls in STEM (science, tech-
nology, engineering, and mathematics) subjects. For example, in mathematics, girls 
may perform as well or better than boys but are more likely to show less confidence 
in their mathematical abilities compared to their actual performance (OECD, 2023). 
On the other hand, boys tend to have higher mathematical self-efficacy, partly because 
they experience more positive feelings and higher cognitive self-esteem (Zander et al., 
2020). Regarding CT, studies like that by Kallia and Sentance (2018) suggest that boys 
usually feel more competent in computing than girls do besides making significantly 
more accurate predictions (better calibrated, according to the authors) about their per-
formance in programming. In addition, Sun et al. (2022) found that boys have better at-
titudes towards programming, despite having lower CT skills than girls. Nevertheless, 
other studies have reported better CT skills in boys (Sun et al., 2021b), while others 
have not found significant differences regarding gender (Zhong et al., 2016).
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Thirdly, concerning educational context, differences between urban and rural areas 
could influence students’ CT skills levels. Simmonds et al. (2019) note that, in Latin 
America, such level differences are due to these programs rarely reaching rural areas, 
which means the digital gap between urban and rural areas only increases. In India, rural 
teachers have less training in computer science, making it difficult to teach computa-
tional thinking (Shah, 2019). On the other hand, the report What Makes Urban Schools 
Different? (OECD, 2013) notes that, in Spain, students in urban areas tend to perform 
better because schools are usually larger, enjoy a better socioeconomic status, and have 
greater autonomy in allocating educational resources. Although recent initiatives have 
sought to reduce these disparities and enhance rural education, significant challenges 
remain (Rodríguez et al., 2023).

1.4. Study Objectives

Based on the above, the present study seeks to achieve the following objectives:
O1:  ● To examine whether there are significant differences based on previous pro-
gramming experience, gender, and educational context in the levels of CT skills 
and CT self-efficacy among 6th-grade students. 
O2:  ● To evaluate possible associations between 6th-grade students’ CT skills and 
their self-efficacy based on the previous variables.

2. Methods

2.1. Design

This research is characterized as a cross-sectional and survey study (Creswell & Guetter-
man, 2019), in which the CT of the participants is quantitatively evaluated from two 
perspectives – self-efficacy and skills. The choice of a cross-sectional design is justified 
by its ability to capture the state of a given variable in a specific population at a specific 
moment, which is well-suited for a study that assesses the current level of abilities or 
attitudes of students quickly and efficiently (Cohen et al., 2018).

2.2. Participants

The criteria for participant inclusion were that students were undertaking the last year 
of primary education in the autonomous community of Castilla-La Mancha and that 
they had express consent from their parents or legal guardians to carry out the evalu-
ation. The selection of participants was based on the characteristics of the educational 
centers where they were taking their last year in primary education. Efforts were made 
to ensure that all chosen schools had a representative percentage of each type (rural/



Assessing Computational Thinking in Primary Education: A Cross-Sectional ... 305

urban) concerning all centers in Castilla-La Mancha. In fact, to ensure representative-
ness and enable subgroup comparisons, a stratified sampling approach was adopted 
based on the educational context (urban vs. rural). The total population comprised 
16,207 urban and 5,782 rural students at this grade. To determine the minimum re-
quired sample sizes for each stratum, we applied stratified sample size estimation 
formulas assuming a 95% confidence level, a 5% margin of error, and maximum vari-
ability (p = 0.5). For the rural population, the calculated minimum sample size was 
approximately 360 students; for the urban population, the required sample size was 
approximately 375 students. 

To determine if a school was rural, those located in localities with a maximum popu-
lation of 5,000 inhabitants were considered, following criteria used by Law 45/2007 
(2007) to define small-sized rural municipalities.

In total, 1306 sixth-grade students participated. This grade was chosen as it marks 
a critical transition from primary to secondary education, where students are expected 
to develop foundational skills that will support their success in more complex learning 
environments (Ávila Francés et al., 2022). Participants were distributed in 57 schools: 
27 urban and 30 rural ones. Table 1 shows these students’ distribution by gender (boys 
or girls), educational context (rural or urban), and previous experience in programming 
(none, low or high). As it can be seen in Table 1, 396 rural and 910 urban students par-
ticipated, thus exceeding the required sample size in both strata.

2.3. Instruments

To measure the participants’ CT, an evaluation system composed of two instruments was 
assembled. Based on Román-González et al. (2019), this evaluation system was used 
with an assessment approach. However, each of its areas has different characteristics that 
we detail below.

Before presenting the main body of the questionnaire, some identification questions 
were posed regarding the gender and previous programming experience of participants, 
among others. Programming experience was self-reported through a single multiple-
choice question that asked whether students had any previous experience with program-
ming, either on a computer or using a robot. The response options were: none, a little, 
or a lot, corresponding to the categories used in the analyses: none, low, and high. This 

Table 1
Distribution of participants by gender, educational context, and programming experience

Programming Experience Rural Urban Total
Girls Boys Girls Boys

None   57   56   60   75   248
Low 114   99 259 301   773
High   38   32   97 118   285

Total 209 187 416 494 1306
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categorization aimed to balance clarity and simplicity for young respondents, avoid-
ing excessive granularity or cognitive overload. A “medium” category was intentionally 
excluded to reduce ambiguity and ensure that the distinctions remained accessible and 
meaningful for primary school students.

2.4. Self-efficacy

To assess students’ self-efficacy towards CT, we used the self-efficacy assessment from 
PESS (Programming Experience, Self-efficacy and Skills) instrument designed by Man-
nila et al. (2020). The original instrument, written in English, was translated into Span-
ish by two native English-speaking lecturers at University of Castilla-La Mancha with 
academic training in Spanish language and education. The items in the self-efficacy 
section were general in nature and did not reference specific cultural or curricular ele-
ments, so no adaptation was required. The translated items were piloted in classroom 
contexts with students matching the study’s target age group, confirming the clarity and 
appropriateness of the items. Regarding the validation of the instrument, Mannila et al. 
(2020) report that it was developed and piloted in two phases: first through an expert 
panel and then in classroom settings with 310 students. However, the authors do not pro-
vide information on the instrument’s reliability. Nevertheless, the data collected in the 
context of our study yielded a Cronbach’s alpha of 0.79, indicating acceptable internal 
consistency.

The original instrument has three areas: experience, self-efficacy, and skills. While 
the skills area adheres to the contents of the Swedish curriculum – the country in which 
Mannila et al.’s study is framed; the questions of experience and self-efficacy are more 
general in nature. On the other hand, given that the experience section of the original 
instrument consisted of 20 items, it was too extensive for the scope of our study, so only 
the self-efficacy section was used. According to the classification proposed by Román-
González et al. (2019), this area of the instrument would be considered as a scale of 
perceptions and attitudes. With it, we evaluate eleven dimensions, categorized into six 
concepts (logical thinking, algorithms, decomposition, pattern recognition, abstraction, 
and evaluation) and five practices (tinkering, creating, debugging, persevering, and col-
laborating) (Barefoot CAS, 2016). In total, it has 22 items – two for each dimension 
– configured as a five-level Likert scale, so its scoring scale ranges from 1 to 5 (from 
“strongly disagree” to “strongly agree”). An example of the questionnaire format and the 
items incorporated is shown in Fig. 1.

Fig. 1. Sample self-efficacy items assessing the Decomposition dimension of CT.
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2.5. Skills

We employed the instrument developed and psychometrically validated by Li et al. 
(2021), which was designed to assess the CT skills of primary education students, from 
3rd to 6th grade (9 to 12 years old). This tool was selected due to its suitability for our tar-
get age group and because it is one of the few available instruments in this category that 
has undergone psychometric validation. Notably, the instrument demonstrated satisfac-
tory internal consistency, with a Cronbach’s alpha coefficient of 0.76, indicating reliable 
measurement (Li et al., 2021). The instrument was translated into Spanish by the Con-
fucius Institute at the University of Castilla-La Mancha, a center specialized in Chinese 
language and culture. Minor contextual adaptations were made, such as modifying the 
character names used in the word problems to align with names familiar to Spanish stu-
dents. The structure, content, and difficulty level of the items were otherwise preserved. 
A review confirmed that no further cultural or contextual adjustments were required, 
as the items were designed to be independent of specific programming environments 
or local references. To ensure clarity and comprehension, a pilot implementation was 
conducted with students of the same age range in a regular classroom setting. The au-
thors describe it as a summative and aptitude assessment of CT, similar to Bebras tasks 
(Dagienė et al., 2016) or the Computational Thinking test (Román-González, 2015). 
According to the classification by Román-González et al. (2019), it can be classified as 
a skill transfer tool.

This instrument measures five dimensions of CT: abstraction, algorithmic thinking, 
decomposition, evaluation, and pattern recognition. It is assembled to be administered 
in a maximum time of 45 minutes and consists of 25 multiple-choice tasks with four 

Fig. 2. Example of a skill item designed to assess the Decomposition dimension of CT.  
Source: Li et al. (2021).
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response options, contextualized in real-life situations. Each problem refers to at least a 
computational skill or concept (see Fig. 2 for an example).

2.6. Procedure

The study was conducted in accordance with the Declaration of Helsinki and was ap-
proved by the Social Research Ethics Committee (SREC) of the University of Castilla-
La Mancha (Ethics Code: CEIS-714230-H0P3). In this context, all participants provided 
written informed consent signed by their parents or legal tutors prior to enrolment in 
the study. The evaluation system was presented to the students in a classroom-group 
context, avoiding taking them out of their usual environment. However, each student 
completed the questionnaire individually. The assessment was administered in paper 
format, allowing students to write their responses directly and enabling observation of 
intermediate steps in the skills section.

To guide the students on how to respond to each section of the questionnaire and 
control the maximum time for completion (60 minutes), a video was made. This video 
included two trial questions for the self-efficacy part and one for the skills part. The 
purpose of these questions was to graphically explain how to respond to the rest of the 
test without influencing their responses. With this video, it was also sought to ensure 
that all participants, regardless of their group, received information uniformly. Apart 
from these instructions, no additional explanations were provided, with the sole excep-
tion that teachers present in the classroom during the administration of the question-
naire were allowed to clarify the meaning of any word if a student indicated they did 
not understand it. 

Regarding the order of tests, although they were all performed in the same block of 
time, the video first scheduled the experience part, followed by the self-efficacy part, and 
finally the skills part.

2.7. Data analysis

In line with the research aims, the statistical analysis focuses on identifying potential 
differences in the scores for CT skills and self-efficacy based on students’ gender, edu-
cational context, and programming experience, as well as examining possible associa-
tions between these variables. For each participant, the CT skills score was calculated as 
the arithmetic mean of the scores obtained for each question in the skills section. Each 
response was coded in a binary manner, assigning one point for a correct answer and 
zero points otherwise. The total score obtained in the CT skills test was adjusted to a 
10-point scale to enhance interpretability and to align with standard academic evaluation 
practices in the country in which the study was conducted. Similarly, the self-efficacy 
score was calculated for each participant as the average of their responses to each ques-
tion in the self-efficacy section of the questionnaire. However, self-efficacy scores were 
retained on a Likert scale ranging from 1 to 5 points to preserve the interpretation of the 
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original scale. Regarding the prior programming experience question, students’ respons-
es – originally “never,” “a little,” and “a lot” – were recategorized as “none,” “low,” and 
“high” to represent varying levels of experience more clearly.

Concerning the statistical analysis aligned with the first objective (O1), a three-factor 
ANOVA was conducted separately for CT skills and self-efficacy scores, considering 
three independent variables: prior programming experience (none, low or high), gender 
(boys or girls) and educational context (urban or rural). In cases of significant interactions 
between two variables, two-factor ANOVA tests were performed for those variables. If 
no significant interactions were observed, main effects were explored using one-way 
ANOVA. Prior to conducting the ANOVA analyses, the assumptions of normality and 
homogeneity of variances were evaluated. Given the large sample size, the normality 
of residuals was assessed graphically using histograms and Q – Q plots. Homogeneity 
of variances was also assessed using Levene’s test and complementary procedures that 
support the use of parametric tests.

Furthermore, for the prior programming experience variable (which includes more 
than two levels), post-hoc pairwise analyses were conducted to identify potential differ-
ences between these levels. Effect sizes were interpreted using partial eta squared for the 
ANOVA analyses and Cohen’s d for pairwise comparisons. To address the second objec-
tive (O2), Pearson correlation analyses were conducted for each independent variable to 
examine the relationship between CT skills and self-efficacy. Before performing Pearson 
correlation analyses, the required assumptions of normality, linearity, and the absence of 
significant outliers were examined.

3. Results

First, Table 2 presents a summary of the descriptive statistics for both CT skills and 
self-efficacy across the subgroups defined by the three independent variables: gender, 
educational context, and programming experience. Subsequently, to ensure a clear and 
structured analysis, the results are presented in alignment with the two research objec-
tives outlined in the study. 

3.1. Results Related to O1

In relation to the first objective (O1), the results of three-way ANOVA are summa-
rized in Table 3. As shown, no significant interaction effects were found among the 
variables programming experience, educational context, and gender in predicting CT 
skills. However, significant main effects were observed for each of the three factors 
independently. Specifically, programming experience emerged as the most influential 
variable, followed by gender and educational context, although the effect sizes for the 
latter two were very small. Regarding CT self-efficacy, only programming experience 
showed a statistically significant main effect, with a moderate effect size. None of the 
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other main effects or interaction terms reached significance, and their effect sizes were 
negligible. 

To further explore the impact of programming experience, post-hoc analyses were 
conducted for both CT skills and CT self-efficacy. The results, presented in Table 4, in-
dicate that students with high levels of prior programming experience significantly out-
performed those with no or low experience on both outcome variables. In contrast, no 
significant differences were found between students with no experience and those with 
low experience. The effect sizes associated with the significant comparisons ranged 
from small to moderate, with stronger effects observed in the self-efficacy domain. 

Table 2
Descriptive statistics by group

Group MCT skills SDCT skills MCT self-efficacy SDCT self-efficacy n

Gender
Girl 3.64 1.16 3.72 0.42 625
Boy 3.80 1.29 3.75 0.44 681

Educational context
Rural 3.81 1.16 3.74 0.43 396
Urban 3.68 1.26 3.73 0.43 910

Programming experience
None 3.62 1.20 3.64 0.45 248
Low 3.67 1.20 3.70 0.43 773
High 3.95 1.31 3.89 0.39 285

Table 3
Summary of three-way ANOVA results for CT skills and CT self-efficacy

Dependent variable Factor(s) F(df) p Partial η² Effect Size

CT skills Programming experience   6.22 (2, 1294) .0021 .010 Small
Educational context   4.06 (1, 1294) .0441 .003 Very small
Gender   6.60 (1, 1294) .0103 .005 Very small
Prog. Exp. × Context   0.05 (2, 1294) .9524 <.001 Negligible
Prog. Exp. × Gender   0.07 (2, 1294) .9311 <.001 Negligible
Context × Gender   0.39 (1, 1294) .5326 <.001 Negligible
Prog. Exp. × Context × Gender   0.48 (2, 1294) .6215 <.001 Negligible

CT Self-efficacy Programming experience 25.87 (2, 1292) <.0001 .040 Moderate
Educational context   1.32 (1, 1292) .2500 .001 Negligible
Gender   1.92 (1, 1292) .1670 .001 Negligible
Prog. Exp. × Context   0.70 (2, 1292) .4950 .001 Negligible
Prog. Exp. × Gender   0.10 (2, 1292) .9050 <.001 Negligible
Context × Gender   0.78 (1, 1292) .3790 .001 Negligible
Prog. Exp. × Context × Gender   0.22 (2, 1292) .8050 <.001 Negligible
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In summary, these results suggest that previous programming experience has a sig-
nificant impact on CT self-efficacy scores, whereas educational context and gender do 
not have a significant influence, either independently or in interaction with other factors. 
The post hoc comparisons indicate that individuals with high programming experience 
have significantly higher CT self-efficacy scores values compared to those with low or 
no experience, underscoring a positive relationship between programming experience 
and performance in this self-efficacy measure.

3.2. Results Related to O2

In relation to the second objective (O2), Pearson correlation analyses were performed 
to examine the association between students’ CT skills and CT self-efficacy across dif-
ferent subgroups (Table 5), considering previous programming experience (none, low 
or high), educational context (urban or rural), and gender (boys or girls). Statistically 
significant but very weak correlations were observed among students with low pro-
gramming experience, those attending urban schools, and male students. In contrast, 
the associations were not significant in the remaining subgroups, and effect sizes across 
all cases were minimal. 

Table 4
Post-hoc comparisons for CT skills and CT self-efficacy by programming experience

Dependent 
variable Comparison Mean 

Difference p Cohen’s d 95% CI for d Effect size

CT skills High vs. None  0.81 .0067  0.27  [0.09, 0.44] Small – moderate
High vs. Low  0.68 .0039  0.22  [0.09, 0.36] Small
Low vs. None -0.13 .8332 -0.04 [-0.19, 0.10] Negligible

CT self-efficacy High vs. None  0.24 <.0001  0.57  [0.40, 0.75] Moderate
High vs. Low  0.18 <.0001  0.43  [0.29, 0.57] Moderate
Low vs. None -0.06 .1160 -0.15 [-0.29, -0.00] Small

Table 5
Pearson correlations between CT skills and CT self-efficacy across subgroups

Subgroup r (Pearson) p-value Interpretation

High Programming Experience 0.00 .9510 None
Low Programming Experience 0.09 .0094 * Very weak
No Programming Experience 0.09 .1440 Very weak
Urban Context 0.10 .0034 * Very weak
Rural Context 0.07 .0692 Very weak
Boys 0.10 .0089 * Very weak
Girls 0.07 .0758 Very weak
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4. Discussion

The assessment system presented in this study directly addresses the demands identi-
fied in the literature regarding the scarcity of comprehensive systems for assessing CT 
(Grover, 2015; Guggemos et al., 2023; Rao & Bhagat, 2024). Previous studies have 
examined how programming instruction enhances CT skills, with a focus on various 
programming modalities and tools. For example, Cetin et al. (2023) investigated the im-
pact of different programming instruction modalities (mBlock, Scratch, and Python) on 
sixth-grade students. Their findings demonstrated the benefits of using constructionist 
block-based and robotics programming environments, although no significant differenc-
es were observed in the development of CT skills across the groups. On the other hand, 
the systematic review by Fagerlund et al. (2021) on the use of Scratch in primary schools 
concluded that this block-based programming language allows students to interact with 
programming content that fosters CT skills. However, the authors emphasized the need 
for more concrete and comprehensive assessment methods to accurately measure CT 
skill development.

Specifically, our study contributes important nuances by directly responding to the 
need for assessments that are not tied to a specific learning environment or programming 
language (Zapata-Cáceres et al., 2024) by integrating both practical tasks and self-report 
tools, in line with the recommendations of Kampylis et al. (2023) and Yeni et al. (2024) 
for more comprehensive and consistent methods to measure CT. In addition, issues re-
lated to gender, equity, and inclusion were carefully considered during the analysis of the 
results, adhering to calls for greater attention to these factors to ensure quality and equity 
in CT education (Kampylis et al., 2023).

Regarding the results obtained, we analyzed differences in CT skills and self-efficacy 
scores among 6th-grade students based on gender, educational context and previous pro-
gramming experience (O1), and examined potential associations between these vari-
ables (O2). 

For O1, no statistically significant effects were observed for CT skills or self-efficacy 
with respect to gender, educational context, or programming experience in the two-way 
and three-way interactions. However, a significant main effect of programming experi-
ence on both CT skills and self-efficacy was evident, extending findings from previous 
studies on the influence of academic self-efficacy on academic performance (Ineson 
et al., 2013; Honicke & Broadbent, 2016). Specifically, there is a significant difference 
between those students who reported to have high programming experience compared 
to those with low experience or no experience. This suggests that a greater exposure 
to programming positively influences students’ CT, a finding consistent with Sun et al. 
(2022), who highlighted that programming experience contributes to CT development, 
particularly when combined with positive attitudes toward programming. 

Despite the presence of certain gender stereotypes concerning CT (Bers, 2021), our 
study reveals no significant differences either on CT skills or self-efficacy regarding 
gender. Although some research has reported higher CT skills in girls (e.g., Sun et al., 
2022) and others in boys (e.g., Sun et al., 2021b), our findings align with those which 
did not identify significant gender differences (e.g., Zhong et al., 2016). Regarding 
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self-efficacy, previous research often reports higher scores for boys (Kallia & Sentance, 
2018; Sun et al., 2022). However, in our study, no significant gender-related differences 
were detected.

Even if there is a lack of research on CT differences between urban and rural ar-
eas, urban schools in Spain have historically tended to achieve better academic results, 
which can be attributed to a broader range of resources and the urban socioeconomic 
context (OECD, 2013). However, recent years have seen efforts to address these dispari-
ties, particularly through the inclusion and promotion of projects and initiatives aimed 
at improving rural education, though significant challenges remain (Rodríguez et al., 
2023). Similar trends are observed in other regions of the world, such as Latin America 
and India, where a digital gap has been identified (Simmonds et al., 2019; Shah, 2019). 
Nevertheless, our study did not identify significant differences between urban and ru-
ral students, which can be attributed to the equitable provision to digital resources and 
teacher training implemented by the regional government.

Regarding O2, we identified statistically significant but very weak correlations be-
tween CT skills and self-efficacy in the case of students with low experience, those 
belonging to urban schools and boys. Consequently, the overall results suggest a low 
association between CT skills and CT self-efficacy in the studied sample. This seems to 
indicate that students’ practical CT skills are not a direct reflection of their confidence 
in these skills. This finding contrasts with previous studies, such as that of Kallia and 
Sentance (2018), which suggest that, in terms of gender, boys typically perceive them-
selves as more competent in computing than girls and make significantly more accurate 
predictions – better calibrated, according to the authors – about their programming per-
formance, which is related to CT.

The lack of strong associations could reflect several underlying factors. On one hand, 
it could indicate that students are still in the process of developing and consolidating 
these skills, which aligns with the initial stage of the gradual integration of CT into 
school curricula in Spain at the time of the development of the study. On the other hand, 
this, coupled with the high scores observed in CT self-efficacy, could point to a possible 
overestimation of abilities, a common phenomenon at these ages, where children may 
exhibit unrealistic optimism about their skills (Wu et al., 2021).

5. Conclusion

The last year of primary education marks the transition to secondary education and 
represents a pivotal stage where foundational skills such as CT play a critical role in 
shaping students’ academic trajectories. This study contributes to understanding the 
factors influencing these skills. The lack of significant effects of gender and educational 
context on CT skills and self-efficacy, as well as the absence of significant effects of 
interactions between the different groups, contrary to the significant main effect of pro-
gramming experience on these scores, may underline the importance of programming 
in developing CT skills in the school. Specifically, the difference between students with 
high programming experience and those with low or no experience indicates that in-
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tensive programming interventions, which work on several CT aspects, have a positive 
impact on CT performance. In other words, although basic or superficial programming 
interventions may have some impact on coding abilities, they fail to address the deeper 
components of CT, as previously found in Yang et al. (2025). Therefore, it is necessary 
to implement more comprehensive programming and CT practices in the classroom to 
fully develop CT.

These findings also provide a nuanced perspective on previous research regarding 
self-assessment measures. For example, Gümüş et al. (2024) observed significant re-
lationships between programming self-efficacy and CT self-efficacy in middle school 
students aged 10–13, based on self-reported measures. While their work emphasizes 
the connections between self-efficacy constructs, our study extends this understanding 
by focusing on the relationship between CT self-efficacy and actual CT skills, where no 
significant correlation was found. This divergence may highlight the difference between 
self-perceptions and objectively assessed competencies, underscoring the need for edu-
cational practices that nurture both aspects. Self-efficacy remains critical, as it directly 
influences motivation and engagement, and fostering students’ confidence alongside 
technical skills is essential for their balanced development in CT.

The variability in the observed correlations between CT skills and self-efficacy, as 
well as the contextual, prior experience, and gender differences that do not follow a clear 
pattern, highlight the complexity of effectively measuring these skills. While the lack of 
significant effects of gender and educational context on CT skills and self-efficacy may 
suggest these variables play a secondary role compared to programming experience, it 
also underscores the need for more nuanced assessment methods. By using both prob-
lems to assess specific CT skills and questionnaires to measure self-efficacy, the study 
has been able to evaluate various facets of students’ CT competence. However, the low 
correlation between these measures confirms that each instrument measures substan-
tially different aspects of these skills.

This disparity highlights the previously stated need in the literature (Grover, 2015; 
Guggemos et al., 2023) for a more comprehensive approach to CT assessment that does 
not rely solely on one type of instrument, as integrating multiple forms of assessment 
can help provide a more complete picture of students’ skills.

5.1. Limitations and Future Guidelines

Despite the conclusive results obtained in this study, some limitations can be identi-
fied. On the first place, the use of a paper-based questionnaire prevented reaching more 
participants and complicated the data management process. However, this choice was 
made intentionally, as it allowed participants to write intermediate steps when solving 
problems, providing deeper insights into their thought processes. Future research could 
explore digital alternatives that preserve this feature while facilitating broader participa-
tion and more efficient data handling. 

Additionally, students’ prior programming experience was self-reported, which 
may introduce certain biases, such as memory inaccuracies or social desirability ef-
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fects. This is particularly relevant given that no specific question was included about 
unplugged programming experiences (e.g., tangible or screen-free activities), which 
are increasingly common in early CT education. Such activities may be harder for 
students to recognize or recall as “programming”, compared to more explicit experi-
ences involving robots or screens. As a result, the variable may not fully capture the 
diversity of students’ prior exposure to programming-related practices. Nevertheless, 
given the lack of reliable and objective indicators – especially in countries where 
such experiences often take place in informal or extracurricular contexts – self-report 
remains a practical and widely used approach to gather background information in 
studies of this kind.

In addition, while this study analyzed the effects of personal, social, and contextual 
factors on CT skills and CT self-efficacy, as well as the association between these vari-
ables, a deeper analysis concerning CT dimensions could provide further valuable in-
sights. Finally, future research could examine how educational interventions concerning 
CT and programming influence broader competencies, such as problem solving, among 
Primary Education students. As highlighted in this study, recognizing and embracing the 
complexity of CT’s polyhedral nature is crucial, calling for educational strategies that 
respond to its varied cognitive and practical challenges.
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