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Abstract. Algebraic Thinking (AT) and Computational Thinking (CT) are pivotal competencies 
in modern education, fostering problem-solving skills and logical reasoning among students. 
This study presents the initial hypotheses, theoretical framework, and key steps undertaken to 
explore characterized learning paths and assign practice-relevant tasks. This article investigates 
the relationship between AT and CT, their parallel development, and the creation of integrated 
learning paths. Analyses of mathematics and computer science/informatics curricula across six 
countries (Finland, Hungary, Lithuania, Spain, Sweden, and Türkiye) informed the development 
of tasks aligned with consolidated national curricula. Curricula were analysed using statistical 
methods, and content analysis to identify thematic patterns. To validate the effectiveness of the 
developed tasks for AT and CT, an assessment involving 208 students in K-12 across various 
grade levels (students aged 9–14) was conducted, with results analysed both statistically and 
qualitatively. Subsequently, a second quantitative study was carried out among teachers partici-
pating in a workshop, providing further insights into the practical applicability of the tasks. The 
research process was iterative, encompassing cycles of analysis, synthesis, and testing. The study 
also paid special attention to unplugged activities – tasks that help students learn CT without 
using computers or digital tools. A local workshop in Hungary, where 26 tasks were tested with 
students from different grade levels, showed that developing CT and AT effectively requires more 
time and practice, especially in key topics. The findings underscore the importance of integrating 
AT and CT through thoughtfully designed learning paths and tasks, including unplugged activi-
ties, to enhance students’ proficiency in these areas. This study contributes to the development 
of innovative educational programs that address the evolving digital competencies required in 
contemporary education.
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1. Introduction

Algebraic Thinking (AT) and Computational Thinking (CT) are foundational competen-
cies in contemporary education, equipping students with the skills to approach problems 
methodically and develop robust analytical abilities (Stacey & MacGregor, 1999; Hsu 
et al., 2018; Dagienė, Hromkovic & Lacher, 2021; Sibgatullin et al., 2022; Bocconi 
et al., 2022; Bilbao et al., 2023; Dagienė et al., 2024). AT involves recognizing patterns, 
understanding variables, and manipulating symbolic representations, while CT encom-
passes problem decomposition, algorithmic thinking, and abstraction. Integrating these 
competencies fosters a cohesive learning experience, particularly within STEM educa-
tion (Dolgopolovas & Dagienė, 2024).

This study was developed mainly under the Erasmus+ CT&MathABLE project 
(2025) – Computational Thinking and Mathematical Problem Solving, an Analytics-
Based Learning Environment – aimed to enhance European educational resilience by 
leveraging digital transformation tools and pedagogies. The project focuses on devel-
oping innovative K-12 school curricula that facilitate the recognition and validation of 
skills necessary for digital transformation, emphasizing the integration of AT and CT. 
By providing open, relevant, and localized educational content with novel interaction 
modes, CT&MathABLE supports students aged 9–14 in developing key competen-
cies for the digital age. The project involves six universities: Ankara University, Eöt-
vös Loránd University, the University of the Basque Country, the University of Turku, 
Vilnius University, and KTH Royal Institute of Technology, along with two schools: 
Klaipėda Gedminai Progymnasium from Lithuania, and Mamak Özkent Akbilek Pri-
mary School from Türkiye. 

A central concept in the project is the “Learning Path”, referring to the structured 
sequence of teaching methods and curriculum topics designed to integrate CT and AT 
effectively. The initial phase involved clarifying the definitions and applications of 
CT, AT, and Learning Paths. Subsequently, the mathematics and informatics curricula 
of six participating countries (Finland, Hungary, Lithuania, Spain, Sweden, and Tür-
kiye) were analysed. This analysis required consolidating diverse national curricula 
to define core mathematics topics, which were then examined through content and 
statistical analyses. Based on these analyses, tasks were developed and compiled into 
a comprehensive task package, with selected samples and assessments presented in 
this paper.

This study addresses the following research questions:

RQ1: How can learning paths be designed to effectively integrate AT and CT for stu-
dents aged 9–14?

RQ2: What are the commonalities and differences in national curricula concerning AT 
and CT across the six participating countries, and how can these inform the development 
of integrated tasks?

RQ3: What impact do the developed tasks have on students’ proficiency in AT and CT, 
and what adjustments are necessary to optimize learning outcomes?
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To address these research questions, a retrospective analysis was conducted, drawing 
upon the collective experiences, documented communications, and publications of the 
CT&MathABLE project team. This analysis aimed to synthesize insights from the proj-
ect’s implementation across the six participating countries. The retrospective approach 
facilitated a comprehensive examination of the project’s methodologies, including the 
design of integrated learning paths, curriculum analyses, task development, and the eval-
uation of student outcomes. By reflecting on the project’s progression and outcomes, the 
study seeks to inform future educational practices that effectively combine AT and CT 
for learners aged 9–14.

2. Concepts

2.1. Learning Path

The term “learning path” encompasses multiple interpretations that should be clarified. 
The most frequent usage of this expression is the flexible learning paths within Learning 
Management Systems (LMS), where learning paths are structured sequences of educa-
tional content tailored to individual learner needs. These paths facilitate personalized 
learning experiences, allowing learners to progress at their own pace and according to 
their specific goals (Janssen et al., 2008; De Smet et al., 2016). Such flexibility is par-
ticularly crucial in lifelong learning contexts, where the comparability and exchange-
ability of courses, programs, and other learning activities are essential both nationally 
and internationally.

Another common application of the term arises in the context of special education. 
Here, the Learning Path refers to individualized educational plans designed to accom-
modate the unique needs of students with exceptionalities, whether they are gifted or re-
quire additional support due to learning challenges. These personalized paths are crafted 
based on the students’ specific skills and areas needing development, ensuring that each 
learner receives appropriate guidance and resources to achieve their educational objec-
tives (Zabolotskikh et al., 2021).

A third interpretation of the Learning Path relates to curriculum design, focusing on 
the sequencing and organization of topics within educational programs. This perspective 
examines which subjects are included in the curriculum, their order, and how educa-
tors can effectively structure syllabi to optimize learning outcomes. By analysing the 
progression of topics, educators can develop coherent instructional strategies that build 
upon prior knowledge and facilitate deeper understanding (Confrey et al., 2014; Soare, 
2017).

In the context of our study, we adopt this third definition of the Learning Path, em-
phasizing the deliberate arrangement of curriculum topics to enhance the integration of 
Algebraic Thinking and Computational Thinking. By meticulously designing the se-
quence and interrelation of subjects, we aim to create a cohesive educational experience 
that fosters the development of these critical competencies.
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2.2. Computational Thinking

Computational Thinking (CT) is an educational concept by Seymour Papert (1996), 
who developed the Logo programming language to support children’s learning through 
exploration and construction. Papert’s work emphasized the importance of learners 
building personal mental models to understand abstract concepts through computa-
tional means. The concept of CT was later popularized by Jeannette Wing in her ar-
ticle (2006), where she advocated for CT as a fundamental skill for everyone, not just 
computer scientists. Wing defined CT as solving problems, designing systems, and un-
derstanding human behaviour, by drawing on the concepts fundamental to computer 
science (Wing, 2006). 

In our interpretation, CT encompasses a cognitive skill set essential for problem-
solving and navigating the complexities of the digital age (Lodi and Martini, 2021). It 
transcends mere programming proficiency, emphasizing logical reasoning, abstraction, 
decomposition, and algorithmic thinking. These skills are applicable across various dis-
ciplines, enabling individuals to approach problems methodically and develop robust 
analytical abilities.

There are multiple interpretations and categorizations of the components of CT in 
existing literature (e.g., Grover & Pea, 2013; Barcelos et al., 2018; Cansu & Cansu, 
2019; Bocconi et al., 2022, Su & Yand, 2023; Bilbao et al., 2024). In our study, we em-
ployed two hierarchical lists: a major list encompassing broad categories, and a more 
detailed minor list. The minor list elaborates on specific elements that fall under the 
overarching themes of the major list, establishing a hierarchical relationship between 
them. These classifications were derived from an extensive review of relevant litera-
ture and curricula during our work (Bilbao et al., 2024; Bocconi et al., 2022; Cansu & 
Cansu, 2019; Dagienė et al., 2024; Denning & Tedre, 2019; Hsu et al., 2018; Sarmasági 
et al., 2025; Su & Yand, 2023). The components identified in both lists are presented 
in Table 1.

2.3. Algebraic Thinking

In mathematics education, Algebraic Thinking (AT) is as important as CT is in computer 
science. AT is also an educational concept, and its origin is not so clear. The history of 
Algebra is measurable in millennia; however, the education methodology was strength-
ened only in the 20th century, so the concept of AT appeared in the middle of the last 
century in published articles (English & Kirschner, 2002). More relevant are the ones 
published after the 1990s, when AT can be compared with CT (Sarmasági et al., 2023; 
Bilbao et al., 2023; Bilbao et al. 2024; Godino et al., 2017). Based on the works of Lins 
(1992), Kieran (2004), Kriegler (2008), Stramel (2021), Blanton & Kaput (2011), we 
understand the components of AT as the following: Relational thinking, which contains 
equality, and inequality; Pattern recognition, which is part of most learning processes; 
Generalization, and its base, abstraction; Numbers and operations; Mathematical lan-
guage, which includes symbols; and Problem-solving (Table 1).



Bridging Algebraic and Computational Thinking: Impacts on Student Development ... 347

AT enables students to address abstract problems and fosters, among other skills, 
the development of mathematical intuition. By understanding symbolic representations, 
equations, and algebraic structures, students can develop strong analytical thinking and 
problem-solving skills, while also understanding and using mathematical language. The 
combination of CT and AT is especially significant in education.

Table 1
Lists of components of CT and AT

Id Description

CT1 Decomposition CT1.1 Decomposition
CT2 Abstraction CT2.1 Abstraction
CT3 Algorithmic Thinking CT3.1 Algorithmic modelling

CT3.2 Logics, and logical thinking
CT3.3 Logical reasoning
CT3.4 Pattern recognition

CT4 Data CT4.1 Data representation and analysis
CT4.2 Data collection
CT4.3 Data modelling
CT4.4 Visualization

CT5 Evaluation CT5.1 Evaluation
CT5.2 Adjustment for efficiency
CT5.3 Optimization
CT5.4 Simulation

CT6 Generalization CT6.1 Generalization
CT6.2 Transferability
CT6.3 System Thinking

AT1 Relational thinking AT1.1 Equality
AT1.2 Inequality
AT1.3 Relational thinking

AT2 Patterns AT2.1 Pattern recognition
AT2.2 Recognition of symbols, numbers
AT2.3 Expression patterns

AT3 Generalization AT3.1 Abstraction
AT3.2 Generalization

AT4 Numbers and operations AT4.1 Numbers
AT4.2 Operations
AT4.3 Variables and unknowns

AT5 Mathematical language AT5.1 Symbols and numbers
AT5.2 Concepts and definitions
AT5.3 Expressions

AT6 Problem-solving AT6.1 Define and understand
AT6.2 Plan and implementation
AT6.3 Evaluation, improvement
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Similar to the components of CT, there are multiple interpretations and categoriza-
tions of AT components in existing literature (Radford, 2000; Kieran, 2004; Kieran, 
2022; Kalati et al., 2024). In our study, we utilized two hierarchical lists: a major list 
encompassing broad categories and a more detailed minor list. The minor list elaborates 
on specific elements that fall under the overarching themes of the major list, establishing 
a hierarchical relationship between them. 

The sequence of components can be organized in various ways; in this context, we 
adopt a didactic perspective. Students typically begin their mathematics education by 
observing simple objects, listing their properties, comparing them, identifying identi-
cal items, and exploring differences such as size, shape, and colour. These foundational 
activities cultivate pattern recognition and the identification of relationships. The first 
component of AT can be called relational thinking (AT1) which involves equality as 
well as inequality and it drives to patterns (AT2) and the recognition of patterns. When 
students practice pattern recognition, a key aspect is the ability to identify general rules 
or principles from specific examples – this process is known as generalization. (AT3). To 
represent generalized patterns, we use symbols and special characters. The world of dig-
its represents numbers (AT4), which form number sets, and operations can be performed 
on them, and they have their own symbolic system (AT5). This structured approach 
supports the subsequent problem-solving (AT6) and the development of AT by guiding 
students from concrete observations to abstract reasoning.

Finally, we used six major components each for AT and CT, as shown in Table 2.
Some clear similarities can be observed between the two sets of components, as illus-

trated in Fig. 1 (Sarmasagi et al., 2025). Both begin with thinking as a cognitive process, 
grounded in the collection, identification, classification, and sorting of information.

Decomposition helps break a problem into smaller, manageable parts, while abstrac-
tion strips away irrelevant details to simplify the issue. Pattern searching and recogni-
tion reduce the problem to familiar and previously solved forms. Solutions can often be 
expressed as a finite sequence of steps, which may then be generalized for application 
to other problems. Thus, perception, processing, and representation are integral to both 
thinking skills. In both AT and CT, the use of a specialized language – a defined set of 
concepts and terms – is also essential.

Given these similarities, the analogous thinking processes and underlying logic of AT 
and CT reveal further connections between the two.

Table 2
The main components of Computational and Algebraic Thinking

Id Description Id Description

CT1 Decomposition AT1 Relational thinking
CT2 Abstraction AT2 Patterns
CT3 Algorithmic thinking AT3 Generalization
CT4 Data AT4 Numbers and operations
CT5 Evaluation AT5 Mathematical language
CT6 Generalization AT6 Problem-solving
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3. Methods

This study employed a comprehensive mixed-methods approach to investigate the in-
tegration of AT and CT within educational curricula across six European countries: 
Finland, Hungary, Lithuania, Spain, Sweden, and Türkiye. The research design encom-
passed qualitative explorations, quantitative analyses, curriculum evaluations, task de-
velopment, and the implementation of computer science unplugged activities to foster 
CT and AT skills among students aged 9–14.

Curriculum Analysis. A comprehensive analysis of mathematics and informatics (com-
puter science) curricula from the six participating countries was conducted. This analysis 
utilized statistical methods, including a concentration measure akin to the Herfindahl-
Hirschman Index (HHI), to assess the distribution and emphasis of AT and CT topics 
within each national curriculum. Content analysis further elucidated thematic patterns 
and instructional approaches across the curricula.

Qualitative Exploration. The initial phase involved exploratory qualitative research 
through structured, in-depth interviews with mathematics teachers. These interviews, 
featuring open-ended questions, aimed to gather insights into teachers’ perspectives on 
integrating AT and CT in classroom settings. The qualitative data collected informed the 
development of a subsequent quantitative instrument.

Task Development and Pilot Testing. Insights from the curriculum analysis and teacher 
interviews guided the development of targeted learning tasks focusing on key areas such 

Fig. 1. Key conceptual connections between CT and AT.
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as grouping and classification, basic operations with integers, and unit conversions (e.g., 
weight, length, perimeter, area, and currency). These tasks were piloted in Hungary with 
208 students from grades 7–12, divided into three cohorts: grades 7–8, 9–10, and 11–12 
plus first-year university students. Each group worked on foundational tasks designed to 
foster both Algebraic Thinking (AT) and Computational Thinking (CT) skills. Although 
our target age group is 9–14, the aim of including higher-grade students in the assess-
ment was to analyze their Algebraic Thinking – whether it is functional and whether they 
possess this skill.

Integration and Evaluation of Unplugged Activities. Recognizing the pedagogical 
value of unplugged activities – educational tasks that teach computational concepts with-
out the use of digital devices – the project incorporated such activities into the learning 
tasks. These activities are particularly beneficial for young learners, offering hands-on, 
interactive approaches to complex topics, thereby enhancing engagement and compre-
hension. In mathematics education, unplugged activities help students visualize abstract 
concepts and develop logical reasoning skills. In computer science education, they intro-
duce fundamental programming concepts such as algorithms and computational think-
ing without the need for computers. The effectiveness of these activities was evaluated 
through student performance and feedback during the pilot testing phase.

Iterative Research Design. The research process was iterative, encompassing cycles 
of analysis, synthesis, and testing. Each phase built upon the previous, ensuring that 
the development of learning paths and tasks was grounded in empirical evidence and 
responsive to stakeholder feedback.

This iterative research design ensured that the development of learning paths and 
tasks was grounded in empirical evidence and responsive to stakeholder feedback, there-
by enhancing the integration of AT and CT in educational practices.

4. Curricula analysis

The exploration of Learning Paths began with an analysis of national curricula. The 
six participating countries provided their detailed mathematics and informatics cur-
ricula for processing and in-depth examination. Typically, a curriculum outlines a 
sequence of topics, each accompanied by specific learning materials and expected 
outcomes. However, the structure and organization of national curricula varied sig-
nificantly. To enable meaningful comparison, the curricula had to be consolidated 
during the analysis.

4.1. Mathematics – Algebraic Thinking

When comparing national mathematics curricula, structural and content-based inconsis-
tencies often emerge. Many curricula contain duplications, as certain key topics must be 
introduced and reinforced at multiple stages – either within the same grade or across sev-
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eral years. Additionally, the level of granularity varies: some countries divide topics into 
two or three separate entries, while others present them in a single, consolidated row.

To enable cross-country comparison, these differences were addressed through a 
careful consolidation process. First, duplications were eliminated. Then, Hungary’s cur-
riculum – being the most detailed – was chosen as the reference framework. Each entry 
from the other national curricula was aligned to the corresponding topic in the Hungar-
ian curriculum whenever possible. If no equivalent topic existed, a new one was added 
to the structure.

Table 3 presents the number of topics analysed and how they changed throughout 
the consolidation process. In some cases, topics from a given country were duplicated in 
the final version because they appeared in multiple grade levels. This explains why the 
final column (Categorized rows) shows more topics than the previous one (Consolidated 
state).

Ultimately, 31 major mathematics topics were defined, representing a consolidated 
structure based on the curricula of all six countries. After the major math topics were 
defined, the typical components of AT and CT were assigned to these topics. Table 4 
contains the 31 major topics and the list of components of AT and CT that affect the 
given major topic.

The relationship is obvious in most cases, as components were defined by the com-
mon parts of algebra, math, or computer science. However, there are some not-so-ob-
vious relations, so the next examples explain some assignments. Comparing numbers, 
shapes, or sets, recognizing the relation among them (less, equal, greater) are the basis 
of relational thinking (AT1), and these are parts of most topics in math curricula. Con-
cepts, names, and symbols (AT5) help thinking, and to recognize patterns that represent 
numbers (AT4), expressions (AT2). Arithmetic (AT1, AT4) serves as a foundation for 
algebra (AT3) and mathematical problem solving (AT6), both of which are essential in 
science and everyday life. Decomposition (CT1) is important in mathematical problem 
solving (AT6), as well as numeral systems (AT4). The concept of numeral systems 
(AT4) involves both abstraction (CT2) and generalization (CT6), the latter of which 
corresponds to generalization in AT3. This is evident in the place value system, where 
the same digit represents different values depending on its position. Numbers, shapes, 
and sets form data (CT4), and every math operation has an algorithm (CT3). Compari-

Table 3
Mathematics curriculum processing progression states

Country Rows  
in source

Pre-processed 
state

Intermediate  
state

Consolidated 
state

Categorized 
rows

Finland 156 156 156 116 141
Hungary 506 207 104 103 104
Lithuania   49   49   49   49   39
Spain 249 201 201 193 138
Sweden   76   76   76   73   67
Türkiye 116   76   76   54   76
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Table 4
31 major mathematics topics

Area of Math Topic ID Name of topic Affected components of 
AT and CT

Mathematics logic / 
set theory

1 Categorization, classification AT1, AT2, AT3, AT5, CT1, 
CT2, CT3, CT4

Algebra 2 Problem solving AT1, AT2, AT3,AT4, AT5, 
AT6, CT1, CT2, CT3, CT4

Algebra 3 Comparison, sorting AT1, AT2, AT3, AT5, CT1, 
CT2, CT3, CT4

Algebra 4 Counting, approximations AT1, AT2, AT4, AT5, CT1, 
CT3, CT4

Number system 5 Digits, numbers, number systems AT1, AT2, AT3, AT4, AT5, 
CT1, CT3, CT4, CT6

Measuring 6 Measurements and measurement tools AT1, AT2, AT3, AT4, AT5, 
CT1, CT3, CT4

Algebra 7 Equations, operations AT1, AT2, AT3, AT4, AT5, 
AT6, CT1, CT2, CT3, CT4

Algebra 8 Mental calculations AT1, AT2, AT3, AT4, AT5, 
AT6, CT1, CT2, CT3, CT4

Geometry 9 Shapes and objects, and their properties AT1, AT2, AT3, AT5, CT1
Analysis 10 Constructions and translations AT1, AT2, AT4, AT5, AT6, 

CT1, CT3
Geometry 11 Orientation in space and on a plane AT1, AT2, AT4, AT5, AT6, 

CT1, CT3
Algebra 12 Relationships AT1, AT2, AT3, AT4, AT5, 

CT1, CT3
Probability and 
Statistics

13 Data collection and management AT1, AT2, AT3, AT4, AT5, 
AT6, CT1, CT2, CT3, CT4

Probability and 
Statistics

14 Randomness AT1, AT2, AT3, AT4, AT5, 
AT6, CT3, CT4

Algebra 15 Columnar operations AT1, AT2, AT4, AT5, CT1, 
CT3

Algebra 16 Part-Part-Whole relationships AT1, AT2, AT3, AT4, AT5, 
CT1, CT3, CT4

Algebra 17 Natural numbers, Integers, and their operations AT1, AT2, AT3, AT4, AT5, 
AT6, CT3, CT4

Mathematics logic / 
set theory

18 Sets AT1, AT2, AT3, AT4, AT5, 
AT6, CT1, CT3, CT4

Mathematics logic / 
set theory

19 Math and logic in everyday life AT1, AT2, AT3, AT4, AT5, 
AT6, CT1, CT3, CT4

Algebra 20 Rational numbers, fractions and their 
operations

AT1, AT2, AT3, AT4, AT5, 
AT6, CT3, CT4

Probability and 
Statistics

21 Ratios, percentages AT1, AT2, AT3, AT4, AT5, 
AT6, CT3, CT4

Algebra 22 Problem-solving with equations, proofing AT1, AT2, AT3, AT4, AT5, 
AT6, CT1, CT2, CT3, CT4

Analysis 23 Functional relationships AT1, AT2, AT3, AT4, AT5, 
AT6, CT1, CT2, CT3, CT4

Continued on next page
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son and sorting (AT1) require decomposition (CT1) to recognize and select the relevant 
properties. Decomposition is also important for compound operations or expressions 
(AT2, AT4, AT6).

The consolidated list of mathematics curriculum topics was examined using both 
statistical and content analysis methods. However, both types of analysis were con-
ducted with the important limitation that only the presence of topics was considered – 
information on the instructional time allocated to each topic was not available.

Before presenting the statistical breakdown of each nation’s curriculum across the 
31 identified categories, it is essential to highlight several key differences among the 
countries: (a) the total number of curriculum entries varies significantly, ranging from 
as few as 39 in Lithuania to as many as 141 in Finland; (b) the extent of coverage 
across categories differs, with Türkiye represented in only 18 categories, while Hun-
gary appears in 30; (c) the distribution of content also varies, as reflected in the average 
number of entries per category – ranging from 1.95 in Lithuania to 5.11 in Spain; and 
(d) the relative emphasis placed on each category differs by country, reflecting national 
educational priorities.

It is also important to note that some structural differences in curriculum design help 
explain these discrepancies. In Lithuania, several topics related to AT are integrated 
into the informatics curriculum rather than the mathematics curriculum, which results 
in fewer entries appearing under mathematics. In contrast, Finland adopts the opposite 
approach: many informatics and CT topics are embedded within the mathematics cur-
riculum, leading to a higher number of entries classified under mathematics.

Fig. 2 shows the breakdown of each category based on the percentage of a nation’s 
curriculum that the given category comprises. By using percentages rather than the 
total number of entries, we are able to standardize across nations, regardless of the 
overall size of their curricula. The figure clearly illustrates that certain categories – 

Table 4 – continued from previous page

Area of Math Topic ID Name of topic Affected components of 
AT and CT

Algebra 24 Series (Sequences) AT1, AT2, AT3, AT4, AT5, 
AT6, CT1, CT2, CT3, CT4

Geometry 25 Planar and spatial shapes’ constructions, 
transformations, properties, and classification

AT1, AT2, AT3, AT5, CT1

Measuring 26 Measurements and units AT1, AT2, AT3, AT4, AT5, 
CT1, CT3, CT4

Probability and 
Statistics

27 Descriptive statistics AT1, AT2, AT3, AT4, AT5, 
AT6, CT3, CT4

Probability and 
Statistics

28 Probability theory AT1, AT2, AT3, AT4, AT5, 
AT6, CT3, CT4

Mathematics logic / 
set theory

29 Mathematical language, reasoning, logic and 
combinatoric

AT1, AT2, AT3, AT4, AT5, 
AT6, CT3, CT4

Algebra 30 Numbers theory, LCM, GCD, power, root AT1, AT2, AT3, AT4, AT5, 
AT6, CT3, CT4

Algebra 31 Pattern usage/recognition AT2, AT3, AT5, AT6, CT1, 
CT2, CT3



P. Sarmasági et al.354

such as Measurements, Equations, Problem-Solving with Equations, and Shape Con-
structions – are more prominent than others. It also reveals that the relative emphasis 
placed on each topic varies across countries. For example, Finland places significantly 
greater emphasis on Equations than on Measurements, whereas Lithuania shows the 
opposite trend.

While the curricula may appear fragmented, statistical analysis reveals substantial 
similarities among them. The selection of countries, as all-European countries, may lead 
to close proximities, and further investigation with Asian, American, South-American 
or African curricula are work to be done still. Group by group, each nation shares more 
than 47.5% of its curriculum with at least four other countries, and nearly 80% with at 
least three. At the same time, each nation maintains its own distinctive focus, emphasiz-
ing particular areas within the shared material. Excluding Geometry – used as a catch-
all category for spatial topics – the national emphases are as follows: Spain focuses on 
problem-solving and pattern recognition; Finland emphasizes equations and operations; 
Hungary highlights comparison, sorting, and equations; Lithuania prioritizes measure-

Fig. 2. Breakdown of categories by nation, showing the relative importance  
of each mathematics category within the national curriculum.
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ments and problem-solving; Sweden focuses on problem-solving and ratios; and Tür-
kiye emphasizes measurements and equations.

We were also interested in examining how concentrated each nation’s curriculum is. 
Due to the differing levels of detail in national core curricula, a direct comparison is not 
feasible. To address this, we applied a Hirschman-Herfindahl-like concentration index – 
calculated as the sum of the squares of the relative weights of each category per nation, 
scaled to a range of 0–10,000. The results are presented in Table 5.

When plotted (Fig. 3), the data reveal that the concentration of a nation’s curriculum 
is strongly influenced by the number of categories represented in that curriculum. This 
is a crucial consideration: while individual categories may appear disproportionately 
significant – for instance, more than 17% of the Finnish curriculum falls under the Equa-
tions/Operations category, a proportion unmatched by any other country – this does not 
necessarily indicate an unusually high concentration overall. As seen in Fig. 3, Finland 
sits only slightly above the regression line, and in fact, its overall concentration value is 
fairly average when compared to the other five nations.

The conclusion is that none of the national curricula are excessively concentrated in 
just a few categories. Overall, the mathematics curricula across countries are broadly 
similar and collectively cover most key components of AT at the primary school level.

Fig. 3. Concentration of national mathematics curricula based on category distribution.

Table 5
Concentration of national curricula across mathematics categories

Code Nation # entries # categories present in Concentration

ES Spain 138 27 566
FI Finland 141 29 621
HU Hungary 104 30 516
LT Lithuania   39 20 717
SE Sweden   67 25 657
TR Türkiye   76 18 855
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4.2. Informatics – Computational Thinking

Informatics (also referred to as computer science or, in some countries, as part of infor-
mation technology – IT) knowledge requirements in education are shaped by European 
Union (EU) directives. The EU developed the Lifelong Learning programme at the com-
munity level, involving NGOs and government bodies from Member States (Lifelong 
Learning, 2002). A key element of this initiative is the definition of key competencies 
aligned with labour market needs, including digital competence as a distinct area. To 
address this need and clarify the components of digital competence, the EU introduced 
the European Digital Competence Framework, known as DigComp (DigComp, 2022). 
The first version was published in 2013, with the most recent update – DigComp 2.2 – 
released in 2022. DigComp offers a structured framework to help European citizens 
understand what it means to be digitally competent, as well as to evaluate and enhance 
their own digital skills. The main elements of this framework are outlined below, in a 
slightly reduced form.

Information and data literacy – Browsing, searching, filtering, evaluating, and  ●
managing data, information, and digital content data.
Communication and collaboration – Interacting, searching information and con- ●
tent, engaging in citizenship, and collaborating through digital technologies; Ne-
tiquette; Managing digital identity.
Digital content creation – Developing, integrating, and elaborating digital content;  ●
Copyright and Licenses; Algorithmizing and programming.
Safety – Protecting devices, personal data and privacy, health and well-being, and  ●
the environment.
Problem-solving – Solving technical problems; identifying needs and technologi- ●
cal responses; Creatively using digital technologies; Identifying digital compe-
tence gaps.

Based on this description, algorithmizing and programming belong to digital content 
creation, whereas application development as a classical programming task usually fol-
lows the steps of problem-solving. Corresponding to the EU concept, these components 
define the general requirements of digital literacy. Obviously, these do not cover the 
professional part of the digital world.

Three of the six countries have stand-alone curricula for informatics. In the remaining 
countries, the informatics and digital culture content is partially integrated into the math-
ematics curriculum and partially into other subjects, such as crafts or technology. The 
project team collected the stand-alone informatics curricula, and for the other countries, 
extracted informatics-related content (e.g., applications of digital tools, etc.) embedded 
within the mathematics curriculum. The union of these topics was then categorized simi-
larly to how the mathematics curriculum topics were organized. The volume of material 
– and consequently the number of topics – is significantly lower than in mathematics, as 
informatics is taught in fewer grades and with fewer hours per week. Since the project 
focuses on ages 9 to 14, the curricula from grades 3 to 8 were analysed, yielding a total 
of 401 topics across the six countries.



Bridging Algebraic and Computational Thinking: Impacts on Student Development ... 357

The first step in processing was the elimination of pure mathematics topics from 
the mathematics curricula in countries without a separate informatics curriculum. The 
subsequent steps followed a process similar to that used for consolidating mathematics 
topics, though it was simpler due to the smaller number of entries and the absence of 
significant duplication. The final number of categorized topics was 288, as shown in 
Table 6.

The categorization of informatics topics presented some challenges. Since the influ-
ence of EU directives was evident in every curriculum, the initial categorization was 
based on the EU suggested digital competencies. Three of the five EU competencies 
are included in the curricula of all six countries. The remaining two competencies were 
not covered in the analysed topics for countries without a dedicated informatics-related 
subject. This gap is expected, as the analysis focused solely on the mathematics cur-
riculum in those countries. However, colleagues from these countries confirmed that 
informatics-related content appears in other subjects, ensuring that all EU competencies 
are ultimately addressed. Table 7 illustrates the extent to which EU recommendations are 
covered in national curricula.

Summarized, the analyses pointed out the national curricula fulfil the expectations 
of EU digital competence (DigComp, 2022). At the same time, algorithmizing and pro-
gramming skills are not so emphasized in EU directives, as those focus only on digital 
literacy and user skills; meanwhile, these are more emphasized in national curricula 
(Oshanova et al., 2019; Soboleva et al., 2021). One possible reason for the over-rep-

Table 7
EU suggested digital competencies in CT-related curricula

Country Communication and
collaboration

Digital  
content creation

Information and
data literacy

Problem-
solving

Safety

Finland –   7   3   1 –
Hungary 16 71 16 23   6
Lithuania   6 23   4   9 12
Spain – 11   2   7 –
Sweden   2   9   2   7 –
Türkiye 12 15   8 10   6

Table 6
Informatics-related curriculum processing progression states

Country Rows in source Consolidated state

Finland 106   11
Hungary 132 132
Lithuania   54   54
Spain   38   20
Sweden   20   20
Türkiye   51   51
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resentation of programming and algorithmization is historical. In the 80’s, informatics 
meant programming, so the first IT-related curricula focused on programming. In the 
90’s, the MS Office application spread in business, and it initiated the curricula changes. 
Most curricula preferred applications and user skills, while programming went back, but 
it has not disappeared, at least in the six countries of this study.

The next major development was the widespread adoption of the internet and mo-
bile communication, which led to the transformation of the informatics subject into 
Information and Communication Technology (ICT) (Stevenson, 1997). Programming 
remained part of the curricula in some countries, and its importance began to grow 
again in the 2010s. During this time, computer science professionals emphasized the 
significance of algorithmic thinking and, more broadly, computational thinking (Szlávi 
and Zsakó, 2012).

The curricula analysed in this study reflect this trend. In Finland, digital literacy is 
viewed as a skill developed naturally through education, as students regularly use digital 
devices throughout their learning (Finnish Educational System, 2023). In Hungary, the 
most recent National Curriculum was launched, renaming the subject from informatics 
to digital culture. According to this new curriculum, digital culture components are inte-
grated across most school subjects (The National Curriculum of Hungary, 2020).

Lithuania updated its latest curriculum in 2023, changing the subject name from IT 
(information technologies) to informatics, with a clear emphasis on CT and program-
ming skills (The National Curriculum of Lithuania, 2023). Spain updated its curriculum 
in 2022. Although there is no separate mandatory subject for computer science, several 
topics related to digital literacy and Computational Thinking are included in the math-
ematics curriculum. Additionally, some regional curricula offer optional computer sci-
ence subjects at the pre-university level (Spanish Government, 2022).

Sweden also released its updated national curriculum in 2022. It does not include a 
dedicated subject for informatics; instead, digital literacy content is incorporated into 
mathematics and technology subjects (The National Curriculum of Sweden, 2022). Tür-
kiye’s curriculum, introduced in 2018, includes a subject titled Information and Com-
munication Technologies and Software (The National Curriculum of Turkey, 2018).

A new categorization has been developed that better aligns with the subject areas 
of the curricula, the age group, and the educational goals expected in teaching. This 
curriculum-based, extended categorization defines 12 major categories. The same type 
of analysis was applied to this categorization as was used for processing the mathematics 
curriculum with its 31 major topics.

As with the analysis of mathematics topics and categories, a few observations must 
be made before examining the data. When looking at each nation’s curriculum in rela-
tion to the 12 identified categories, significant differences emerge among countries: (1) 
The total number of entries varies widely – from as few as 11 for Finland to as many as 
132 for Hungary; (2) The number of categories represented also differs – Finland and 
Sweden appear in only 4 categories, while Hungary and Türkiye are present in 9; (3) The 
distribution of content, measured by the average number of entries per category, ranges 
from 3.75 in Sweden to 14.67 in Hungary; (4) The relative frequency of each category 
differs across nations.
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Fig. 4 shows the breakdown of each category, based on what percentage of each na-
tion’s curricula the given category makes up. By using percentage instead of total num-
ber of entries, we standardize among nations irrespective of the curricula size. 

Certain categories – such as Algorithms and programming, Create and modify digi-
tal content (office and creative), and Technical solutions – emerge as notably more 
dominant than others across national curricula. At the same time, the relative em-
phasis placed on each topic varies significantly by country. For example, Lithuania 
gives far greater priority to Protection against the dangers of the digital world, while 
Hungary places more emphasis on Create and modify digital content (office and cre-
ative), highlighting distinct national approaches within the broader digital competence 
framework.

We also investigated how concentrated each nation’s curriculum is. Due to the dif-
ferent details of the national core curricula, the Hirshman-Herfindahl-like concentration 
measure (sum of the square of the relative weight of each category for the nation, scaled 
up to 0–10,000) was used, which provided the following data:

Plotting the data from Table 8, Fig. 5 illustrates that the concentration of a nation’s 
curriculum is largely influenced by the number of categories it addresses – this trend 
mirrors what we observed in the mathematics analysis. In general, nations that include 
a broader range of categories tend to have a more evenly distributed curriculum, while 
those focusing on fewer categories show a higher concentration in specific areas.

The absence of a stand-alone informatics curriculum in three countries – contrasted 
with its presence in the other three – helps explain the variation in the number of topics 
and categories represented. Looking at the data more closely, it becomes evident that 
some topics carry disproportionate weight in certain countries. These differences stem 
in part from structural variations in national education systems: while some countries 

Fig. 4. Proportional distribution of informatics categories by country.
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teach informatics as a dedicated subject, others integrate it into areas like mathematics 
or technology.

Despite these differences in structure and emphasis, all six countries fall relatively 
close to the regression line. This indicates that the overall concentration of informatics 
content is fairly consistent across nations. In other words, no curriculum appears sig-
nificantly more concentrated or diffuse than the others. This suggests a broadly shared 
recognition of the need for a balanced and comprehensive approach to digital education, 
even though its implementation varies by country.

5. Content Analyses

5.1. Mathematics curricula

Content analysis in this study refers to the systematic examination of curriculum docu-
ments to identify, categorize, and compare the knowledge, skills, and learning goals 
emphasized in mathematics education across different countries. This approach helps 

Table 8
Curriculum concentration of nations

Code Nation # entries # categories present in Concentration

ES Spain   18 5 3272
FI Finland   11 4 3223
HU Hungary 132 9 1866
LT Lithuania   54 8 1564
SE Sweden   15 4 3778
TR Türkiye   56 9 1486

Fig. 5. Informatics-related category concentration by nation.
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reveal both commonalities and variations in how core mathematical concepts are taught 
within K–12 education. The analysis was carried out in two major parts.

The first part focused on the examination of the 31 major mathematics topics, aiming 
to clarify the purpose and expected outcomes of each thematic group. This analysis was 
supported by insights from interviews conducted with primary school teachers, whose 
classroom experience helped contextualize and validate the interpretations.

The second part involved the creation of a detailed list of learning outcomes, orga-
nized by the main areas of mathematics – such as Algebra, Geometry, and Calculus – and 
grouped according to age ranges (grades 3–4, 5–6, and 7–8). This structure allows for 
a clearer understanding of the progression of mathematical skills and concepts across 
K-12 levels, offering a practical tool for curriculum comparison and alignment across 
different national systems.

The analysis of curricular topics and content revealed no significant differences 
among the national curricula regarding the conceptual underpinnings of mathemat-
ics, which form the basis of algebraic thinking (AT). Generally, it starts with playing, 
when the students stack, sort, group and classify simple but distinguishable objects. 
These playful experiences allow the students to get used to the language of mathemat-
ics and to learn the basic concepts. Besides the Categorization and comparison topics 
the Problem solving and Comparison and sort topics are also parts of the introductory 
and foundational process, so students also learn the relations and relationships that 
introduce them to relational thinking and problem-solving. The knowledge of basic 
concepts, like quantity, less than, and greater than provides a foundation for mov-
ing to Counting, approximations and Digits, numbers, and number systems topics, 
and the next step is the Mental calculations and Equations, operations topics, which 
focuses on basic operations, like addition at early grades. The topic of measurements 
and measurement tools is a complex element of the curriculum that draws on several 
components of algebraic thinking (AT). Relational thinking, problem-solving, pat-
terns, numbers and operators, symbolic representation, and mathematical language are 
equally important to achieve the learning outcome. Three major topics help students 
to get basic geometry knowledge. Shapes and objects and their properties, Orientation 
in space and on a plane, and Constructions and Transformations. These topics also 
confirm several components of AT. While the additional early-grade topics are not as 
prominently featured, domains like data collection and management, and mathematics 
and logic in everyday contexts, play a key role in laying the groundwork for problem-
solving and algebraic thinking.

The identified topic groups span several grades, the students are practicing, rein-
forcing, and extending the knowledge of the topic after the initial introduction. The 
Columnar operations and Natural numbers, Integers, and their operations topics gen-
eralize the number concept and their operations in grades 3–4. In the upper grades, the 
number range is extended with rational numbers, fraction operations, and the notion of 
functions. In the pre-secondary grades, only Mathematical –language, reasoning, logic, 
and combinatorics is a new topic, the further learning materials are the extension of 
earlier topics.
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Some countries include distinctive topics in their curricula. For example, the Lithua-
nian curriculum covers financial calculations, while the Hungarian and Turkish curricula 
incorporate set operations and set theory. Finnish and Spanish curricula place a stronger 
emphasis on the use of mathematical language, whereas in Hungary and Sweden, it is 
mentioned only as part of certain learning materials.

Despite these differences, the core elements of the curricula are largely aligned. In 
addition to shared foundational topics, the curricula reflect similar pedagogical princi-
ples and instructional sequences. For example, when introducing operations, a common 
progression can be observed: starting with estimation, followed by (mental) calculation, 
verification of result, and rounding. This sequence also closely corresponds to key as-
pects of algorithmic thinking.

After the 31 major topics were defined, each national curriculum topic was assigned 
to a major topic by age group. This resulted in some duplications of topics at different 
age groups; however, the detailed descriptions explain the differences. For instance, 
the columnar operations in grades 3–4 are limited to natural numbers, while these are 
extended to negative integers in grades 5–6. Taking age groups into account, the result 
of assigning minor topics to major topics is 231 pieces of learning material, the order of 
which defines the available learning paths. These were the source of the task collection 
for practicing the components of algorithmic thinking that needed to be prepared, cre-
ated and collected by the project team.

Clearly, there are differences in the learning pathways of different national curricula, 
as well as in the importance and difficulty level of minor learning topics. To explore the 
critical parts of mathematics curricula and the most relevant learning paths regarding 
algorithmic thinking, exploratory research was implemented. This helped to identify 
the components that students should practice and the critical tasks that could hinder 
their progress. The first stage of the exploratory research involved qualitative analysis 
and five teacher interviews. Two teachers from lower-primary school, two from higher-
primary school and a teacher from secondary school.

Teachers from lower-primary schools reported that students need significantly more 
time and practice to develop strong arithmetic skills. Once these foundational skills are 
secure, students are better able to explore relationships, recognize patterns, and begin to 
generalize. The recommended tasks should encourage approximation and allow for ex-
tensive trial and error, guiding students to discover results independently. An emphasis 
should also be placed on finding all possible solutions through systematic exploration 
– an approach closely related to the logic of backtracking algorithms.

One teacher specifically highlighted subtraction as a particularly challenging opera-
tion that demands extra attention. Multiplication, on the other hand, should be intro-
duced through number sequences. For example, multiplying by 7 is often difficult for 
students, so repetition of the multiplication table – especially at the start of each school 
year – is essential.

Teachers also emphasized the importance of practicing mathematical logic through 
playful activities, particularly in understanding true and false statements and using ne-
gation. These exercises help students become more comfortable with mathematical lan-
guage and reasoning.
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Another challenge noted was students’ lack of experience and conceptual under-
standing when learning measurement units. Changes in lifestyle – such as children be-
ing driven to school rather than walking, or rarely encountering real-life examples like 
buying a half-kilogram of bread – mean that students often have little intuitive sense of 
distance, weight, or volume. As a result, this area of the curriculum requires rich visual 
tools, hands-on experiences, and repeated practice to build understanding.

Additionally, one respondent teacher emphasized the importance of estimating the re-
sults of operations – even with columnar algorithms – and recommended using domino-
style arrangements of numbers to help students practice quantity recognition. Another 
teacher pointed out that many students struggle with weak memory skills, which need to 
be actively developed. They also observed that students often try to avoid the cognitive 
effort involved in thinking through problems and calculations, preferring instead the 
simplicity of filling out multiple-choice tests. Finally, the concept of part-whole rela-
tionships was highlighted as essential preparation for learning fractions, with particular 
emphasis on understanding halves, thirds, and quarters.

The teachers from upper-primary schools also highlighted the arithmetical skills. The 
basic operations should be practiced, subtraction, multiplication table and the division 
with two digits numbers. During the practicing, the approximation and rounding are 
also important. The classification by properties can be generalized in upper grades, for 
numbers, operations, triangles, rectangles, etc. The secondary school teacher in addition 
emphasized the compound operations with negative numbers.

This exploratory qualitative research identified the most important learning paths and 
highlighted the key details that practicing reinforce students’ knowledge and algebraic 
thinking skills. This result was confirmed by a small-sample quantitative study (n = 32), 
in which the respondents were from three of the six participating countries.

5.2. Informatics curricula

A detailed content analysis of informatics curricula was not carried out for several rea-
sons. First, informatics curricula generally contain fewer topics, and the variation be-
tween national approaches is considerably higher than in other subject areas. Second, 
the core learning outcomes of informatics – particularly those related to computational 
thinking – are already well established in the professional community, and many tested 
tasks and teaching strategies are available from prior work in the field.

Moreover, informatics / computer science is not consistently treated as a standalone 
subject across countries. In many education systems, informatics content is embedded 
within other subjects such as mathematics, science, or technology, or it may be largely 
absent at the primary and lower-secondary levels. Where a separate subject does exist, it 
often emphasizes digital literacy and the practical use of digital tools (e.g., word process-
ing, spreadsheets), rather than focusing on deeper algorithmic or problem-solving skills.

Given these factors, the compilation of learning outcomes was based on curriculum 
review and supported by statistical categorization, rather than in-depth content analysis 
of individual national curricula.
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6. Early Evaluation of Key Mathematical Concepts through Sample Tasks

During the development and selection of tasks, we incorporated insights from teacher 
interviews to focus on three key recurring topics identified as essential in learning tra-
jectories: (1) Grouping and classification (including basic set operations), (2) Basic op-
erations with integers, and (3) Understanding and converting measurement units (e.g., 
weight, length, perimeter, area, and money).

A mid-phase study was conducted in Hungary prior to the full-scale pilot across six 
countries. This involved administering 26 fifth-grade tasks in a timed online format. 
Each task had a time limit of either 30 or 60 seconds, depending on its difficulty.

The tasks were distributed as follows:
9 tasks focused on grouping and classification, testing basic set operations such as  ●
union and intersection.
2 tasks assessed number concepts and the understanding of mathematical sym- ●
bols.
3 tasks involved converting monetary units. ●
10 tasks addressed basic operations with integers. ●
1 task evaluated students’ understanding of columnar division. ●

While many tasks were solved easily by students, those targeting the identified criti-
cal areas produced noticeably weaker results. These specific topics are not only founda-
tional for AT, but also crucial for developing CT skills.

The findings validated the concerns raised by teachers – highlighting that certain 
fundamental topics require significantly more instructional time and practice. The re-
mainder of this section provides detailed descriptions of nine representative tasks from 
the set of 26, illustrating their role in fostering CT and AT development.

The total number of respondents was 208 students, with their grade-level distribution 
presented in Table 9. Grades 7–8 correspond to primary school, grades 9–12 to second-
ary school, and “1st” refers to first-year university students enrolled in a Computer Sci-
ence program. For the purposes of detailed statistical analysis, three grade groups were 
created: 7–8, 9–10, and 11–12–1.

Additionally, 116 of the respondents were enrolled in mathematics extended (ad-
vanced) classes, and their results were compared with those of students in standard 
mathematics classes. In general, students in higher grade levels and those in advanced 
mathematics classes performed significantly better than their peers in lower grades or 
regular classes; any exceptions to this trend are highlighted in the results. A 5% signifi-
cance level was used for statistical comparisons (p < 0.05).

Table 9
Number of respondent students by grade

Grade   7   8   9 10 11 12   1 Total

Subjects 23 76 10 24 40 18 17 208
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The introductory tasks were recognizing even numbers (Q1– it means, it was the first 
task, question within the questionnaire) and prime numbers (Q2), and most respondents 
knew the right answer. The next 2 tasks asked about the basic set operations. The items 
of A set are 2, 4, 6, 8, 10, 12, 14, 16, and the items of B set are 2, 3, 5, 7, 11, 13, 17. The 
union of A and B sets (Q3) was the first task where the rate of right answers was less than 
50% (40.4%). It was observable, after the online application displayed the right answer, 
students remembered the name and rule of operations, and 68% gave the right answer to 
the intersection of A and B sets question (Q4).

The fifth question (Q5; HU_56_18_01_05 – it is the identifier of the task in the task 
collection) is part of our task collection: What is the intersection of the set of even num-
bers and the set of odd numbers? The options for answer are (a) the set of integers; (b) 
The set that contains only the number 0; (c) The set that contains only the number 2; (d) 
The empty set. The correct answer is (d), and the freshman students of the Computer 
Science program selected it correctly; the students of secondary school gave 72% right 
answers, and the students of primary school achieved only 28%. The further questions 
regarding grouping, classification, and sets provided similar results. There was no sig-
nificant difference between 9–10 and 11–12-1 grades.

The importance of this topic comes from the general learning process. There are 
several theories of the learning process, common of them the role of experience, which 
involves collecting information through touching, watching, and listening. The human 
processes them, grouping, sorting, classifying, and making a link, an association between 
the new thing and a known object or concept. So, the first steps of mathematics learning 
in lower grades are the classification, sorting, comparing, and counting of objects and 
concepts; later, students assign symbols to the concepts and operations. Because these 
steps repeat later in the case of most new topics in higher grades, the grouping, classifi-
cation are very important. Some curricula introduce set theory from the 5th grade, where 
students identify sets by their elements or separate numbers, and items into different sets 
by classification. Students also learn basic set operations like the union and intersection 
of two sets, which helps to generalize the mathematics operations to apply them in other 
parts of life.

These tasks are related to mathematical language (AT5), abstraction (CT2), general-
ization (AT3, CT6), and problem solving (AT6). The latter is not only mathematically, 
but also generally meant, which is also extended to computer science.

We selected tasks related to money handling and currency denominations from the 
broader topic of understanding and converting units of measurement. The first two in-
troductory exercises focus on recognizing and using currency denominations. In the first 
task (Q12), students calculate the total value of several displayed bills. In the second 
task (Q13), they must determine how many ten-unit denominations are equivalent to the 
previously calculated total. 

The next highlighted task (Q14; HU_56_17_01_02/a) asked how many five-denom-
ination banknotes correspond to the previously calculated total, while the hardest task 
(Q15; HU_56_17_01_02/b) from this topic asked about the minimum number of ban-
knotes if the amount is 4.575 EUR and the available denominations are 5, 10, 20, 50, 
100, 200, and 500 EUR. The results are relatively weak: in primary school, 62% and 
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36% of students answered the latter two tasks correctly; in secondary school, the cor-
responding figures were 84% and 76%. The performance of first-year university students 
was also thought-provoking, with 76% and 65% answering correctly.

These tasks are built on arithmetic skills (AT4) and decomposition skills (CT1), 
which are important for both investigated thinking skills, as it is part of problem solving 
(AT6) and mathematical language (AT5).

The basic operations with integers were tested with simple one-digit integers. Almost 
every expression contained three numbers and two operators in the exercise, where the 
numbers were replaced with variables. The values of variables were A = 7, B = -2, C = 5, 
and D = -3. The difficulty of the tasks increased from task to task. Before the analyzed 
exercises, there were four introductory tasks, which checked the usage of four basic op-
erators (Q16–Q19). The calculation of A + B + C (Q20; HU_56_17_01_01/a) value was 
not an issue; 94% gave the right answer, and the weakest grade, the 7th grade, achieved 
78%. There were no significant differences by any of the groupings. The right calcula-
tion of A - B - C (Q21; HU_56_17_01_01/b) was successful for 59%, confirming the 
issues regarding subtraction, especially with negative numbers. Although the standard 
deviation is only 21%, there is a wide difference between the result of the weakest 7th 
grade (39%) and the best university students’ grade (94%). The percentage of students 
who got D + B - C (Q22; HU_56_17_01_01/c) correct was 53%, and in almost all grade 
levels, students performed worse on Q22 than on the preceding task. The next subtrac-
tion task required the result of D - C - B (Q23; HU_56_17_01_01/d). The total rate of 
right solutions was 54%, the standard deviation was 26% among grades, the weakest 
was the 7th grade (26%), while the best was the 11th grade (89%). 

The next task (Q24; HU_56_17_01_01/e) was extended with multiplication, ask-
ing students to calculate A * (B - C) + D. The overall correct response rate was below 
50% (49%). While university students performed very well (94%), and secondary school 
seniors also showed decent results (67%), primary school students scored significantly 
lower, with 7th graders at 22% and 8th graders at 32%. This result further confirms that 
mastering the evaluation of parenthetical expressions and fundamental operations in-
volving signed numbers necessitates additional practice. These skills form the foun-
dation of algebra, which inherently depends on algebraic thinking. Moreover, the se-
quential application of appropriate steps constitutes an algorithm, a key component of 
computational thinking.

These tasks – especially the final one involving brackets – play an important role in 
mathematics by preparing students for solving equations, working with inequalities, and 
understanding algebraic fractions. In addition to their relevance for AT, they also support 
the development of CT, as they require and strengthen skills such as decomposition and 
algorithmic reasoning. Recognizing sub-expressions within brackets and understanding 
the correct order of operations are essential components in both AT and CT.

A separate task was the assessment of columnar division (Q26). Students were given 
the wrong solution to a columnar division (63271 : 4 = 15842) and had to find the first 
wrong step. This was the last task of the questionnaire, and its result was the weakest. 
The total rate of right solution was 35%, and the standard deviation was only 15%, 
although the best, 12th grade, achieved 72%, their rate among the respondents is low. 
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Their success reason is the practice for graduation. The results of students at the univer-
sity were only 41%, while further grades’ results were close to the total rate. The only 
significant difference was that the 11-12-1 grades group scored better; the number of 
mathematics lessons did not affect the results.

The importance of the columnar division is reasoned with decomposition skill (CT1), 
knowledge of numbers and operations (AT4), algorithmic thinking (CT3), and problem-
solving skill (AT6). Besides the AT and CT components, it requires students’ attention 
and consideration. 

The weak results confirmed, students forgot simple mathematics operations as they 
always use a calculator, and they have given up thinking. As a teacher mentioned in an 
interview, students prefer multiple-choice tests, where they do not have to think and 
calculate, they can tip it. Although this test was also a multiple-choice test, the presented 
tasks contained calculations that required the implementation of operations.

7. Unplugged exercises to develop AT and CT skills

There are several unplugged initiatives like Graph Paper Programming from code.
org; or Barefoot Computing that offers unplugged lessons for Primary, focused on CT 
(barefootcomputing.org); or the CS Unplugged movement (www.csunplugged.org), 
which promotes the teaching of computing concepts through games, magic tricks, and 
hands-on activities, has brought a more dynamic and engaging approach to computing 
education. This CS Unplugged initiative was established in the late 1990s by profes-
sors Tim Bell, Ian H. Witten and Mike Fellows (Bell et al., 1998), and has since gained 
international recognition, influencing curriculum design in many countries (Cortina, 
2015).

Unplugged activities play a significant role in both mathematics and informatics 
(computer science) education by fostering critical thinking, problem-solving abilities, 
and a deeper understanding of fundamental concepts – without relying on digital tech-
nology (Bell et al., 2009; Resnick & Rosenbaum, 2013; Pluhár, 2021). These activities 
are particularly effective for younger learners, offering a tangible, interactive way to 
engage with complex ideas, making learning more accessible and enjoyable.

In mathematics education, unplugged activities help students visualize abstract con-
cepts and strengthen logical reasoning skills (Rumbus, 2023). For example, tasks in-
volving sorting, pattern recognition, or geometric construction allow students to explore 
mathematical ideas in a hands-on manner. This not only improves comprehension but 
also promotes collaboration and communication among peers.

In informatics, unplugged activities introduce key programming concepts – such as 
algorithms, data structures, and computational thinking – without the need for comput-
ers (Vöcking et al., 2011; Bende, 2020; CS Unplugged, 2025). These activities encour-
age students to break down problems into smaller, manageable parts, thereby fostering 
early algorithmic thinking (Duncan & Bell, 2015). Furthermore, they help address the 
digital divide by providing meaningful learning experiences even in settings where ac-
cess to technology is limited.
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Thus, unplugged activities are a powerful tool in laying a strong foundation in both 
mathematics and computer science. They not only prepare students for more advanced 
study but also help develop transferable skills that are valuable in real-world problem-
solving contexts (Mohamad Noor & Hassan, 2018; Lénárd, 2019).

The learning process and the tasks of the project contain unplugged activities in 
each topic as a start “step”. The tasks were developed based on the results of a study 
of curricula and support the development of both algebraic thinking and computational 
thinking. 

The tasks are age-appropriate, designed to align with the cognitive development of 
each age group. The target groups were divided into three categories: pupils in grades 
3–4, 5–6, and 7–8. A total of 23 fourth graders, 23 sixth graders, and 26 seventh graders 
participated in the testing. Most of the activities were adapted across the age groups, 
maintaining the same basic rules while increasing either the complexity of the rules or 
the difficulty of the components used.

We would like to highlight and present two selected activities from our collection.

7.1. Learning fractions with a hands-on puzzle activity

An activity was designed to introduce and reinforce pupils’ understanding and practical 
application of fractions. In this task, learners are given a variety of pre-mixed puzzle 
pieces, each depicting a part of a whole through coloured segments. The goal is to iden-
tify and match pairs of pieces that together complete a whole. This hands-on approach 
supports the development of a conceptual understanding of fractions, strengthens ana-
lytical thinking, and promotes recognition of part-whole relationships.

The mathematical content becomes progressively more complex through increasing 
levels of difficulty. Tasks incorporate a range of ratios, diverse visual representations, 
and more abstract relationships. This progression allows students to explore fractions 
beyond basic forms, including comparisons, identification of equivalent fractions, and 
the construction of composite wholes. 

When introducing fractions, it is crucial to consider learners’ cognitive readiness to 
assimilate a new number system, which becomes essential when understanding division. 
The awareness that the outcome of a division is not always a whole number is fundamen-
tal to grasping the concept of fractions meaningfully.

Understanding the part-part relation is key to developing concepts of rational num-
bers from the lower grades onwards. In the early stages of the didactic process, it is 
useful to use visual, playful tools in which pupils are not yet exposed to the formal 
notation of fractional numbers. In these tasks, a whole is broken down into two parts 
(sometimes of different sizes) and the aim is for pupils to fit the puzzle elements to-
gether in such a way that they complement each other visually and in terms of content 
to form a complete whole. In later stages, formal notation of rational numbers, includ-
ing ordinary fractions, can be gradually introduced, according to age-specific needs. 
The task type can be differentiated accordingly to support conceptual consolidation in 
the upper grades. Pupils then assemble the whole using fractions, thus developing their 
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number concepts and their ability to work with fractions. An improved version of the 
method can also be used effectively to introduce and visualise the concept of percent-
age. In this case, the pupils do not only work with the colouring of the whole parts, 
but the rational number is displayed on the surface in the form of a common fraction, 
a decimal fraction and a percentage at the same time (Fig. 6). This simultaneous repre-
sentation of multiple representations contributes to the development of transferability 
between different number representations and helps to develop a deeper understanding 
of the concept of percentage.

The presented tasks were designed to develop multiple components of algebraic rea-
soning, including relational thinking (AT1), pattern recognition (AT2), generalisation 
(AT3), and numerical operations (AT4). Simultaneously, they also strengthened core 
elements of computational thinking, such as decomposition (CT1), abstraction (CT2), 
and data representation and analysis (CT4).

7.2. Developing AT and CT skills through a spatial-visual task: tangram

We selected a geometry-based task using the tangram – an ancient Chinese puzzle de-
signed to strengthen spatial reasoning and visual perception. A standard tangram set 
consists of seven geometric pieces: two small triangles, one medium triangle, two large 
triangles, one square, and one parallelogram.

In this activity, pupils were challenged to arrange all pieces so that they touched 
edge-to-edge without overlapping. The task was introduced in two phases. In the first 
phase, students replicated a coloured figure using visual cues. The second phase pre-
sented a more demanding challenge: reconstructing a shape from a black-and-white sil-
houette, requiring higher-level spatial-visual skills and abstract thinking.

Age-appropriate versions of the tangram, such as the “Columbus’ Egg” variation 
(Fig. 7), were used for different grade levels. Students were also encouraged to design 
their own tangram puzzles, create visual or verbal clues, and collaborate on solving each 
other’s challenges. Instead of using printed templates, learners could create pieces using 
salt dough or 3D printing, further fostering creativity and hands-on engagement.

Fig. 6. Fraction puzzles at a higher difficulty level – “Find equivalent values”  
and “Match the pairs to form a complete whole”.
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The task aimed to develop key aspects of spatial thinking, geometric intuition, prob-
lem-solving abilities, and strategic planning. Furthermore, it supported the development 
of several components of algebraic reasoning, particularly Relational Thinking (AT1) 
and Problem Solving (AT6). In parallel, it fostered components of computational reason-
ing, including Algorithmic Thinking (CT3) and Generalization (CT6).

8. Conclusion

This study examined how Algebraic Thinking (AT) and Computational Thinking (CT) 
can be meaningfully integrated into mathematics (and/or informatics) education for stu-
dents aged 9–14. The research was guided by three questions, addressing how learning 
paths can support both forms of thinking, how national curricula compare in their treat-
ment of these competencies, and how developed tasks affect student outcomes.

The study demonstrated that well-structured learning paths – starting with founda-
tional tasks in grouping, classification, and set operations – can effectively support the 
development of both AT and CT. The progression was designed with increasing complex-
ity across three learner groups (grades 3–4, 5–6, and 7–8), using familiar mathematical 
content as a foundation for abstract reasoning, algorithmic thinking, and decomposition. 
Visual puzzles, numerical patterning, and logic-based exercises (such as tangram con-
figurations or fraction matching) were adapted to each level to reinforce the same core 
principles through age-appropriate means.

These paths show that CT can be naturally introduced through mathematical pro-
cesses like classification, comparison, and basic operations, while AT is enhanced by 
tasks involving abstraction, patterns, and symbolic manipulation. The learning paths 

Fig. 7. The tangram puzzles and the clues in the different age and difficulty levels.
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also illustrate how interdisciplinary tasks can be embedded into existing curricula with 
minimal structural disruption.

A comparative analysis of the curricula revealed broad agreement on the importance 
of logical reasoning, problem-solving, and basic mathematical operations, although the 
timing, depth, and framing of AT and CT varied across countries. While CT is not 
always explicitly named, its underlying skills (such as algorithmic thinking and decom-
position) are often addressed through mathematics standards.

These findings informed the development of adaptable tasks that can be used 
in multiple national contexts. Tasks were designed to align with shared curriculum 
goals – such as developing number sense, introducing set theory, or understanding 
measurement systems – while also accommodating country-specific learning expecta-
tions. This adaptability is crucial for widespread implementation and sustainable use 
across diverse educational systems.

Empirical findings, based on testing with 208 students across three educational lev-
els, revealed recurring difficulties with foundational concepts – particularly set opera-
tions, addition and subtraction of negative numbers, and multiplication with parenthe-
ses. In many cases, fewer than 50% of students correctly answered tasks involving 
operations with brackets or more complex symbolic representations.

The results indicate that students often rely heavily on calculators and multiple-
choice formats, limiting their capacity for independent reasoning and deep conceptual 
understanding. Set theory and basic integer operations, which reappear at higher edu-
cational levels, were especially weak points, highlighting the importance of reinforcing 
these early and consistently.

Crucially, teacher feedback gathered during the project strongly supported the in-
troduction of unplugged, hands-on activities to address these weaknesses. Practical 
tasks  – such as puzzles, classification challenges, or tangram-based spatial reasoning – 
were identified as effective tools for promoting CT and AT simultaneously. Teachers 
emphasized that such activities support exploratory and collaborative learning, helping 
students to internalize abstract mathematical ideas through tangible, engaging expe-
riences. These tasks can be easily integrated into both mathematics and informatics 
lessons, creating synergy between the subjects. As demonstrated by the sample tasks 
included in the project (Sarmasági et al., 2024), unplugged approaches not only help 
build conceptual understanding but also reduce overdependence on digital tools.

Together, these findings underscore the need for a more intensive, structured, and 
practical approach to teaching fundamental mathematical concepts in a way that natu-
rally develops CT and AT. Learning paths that combine gradual conceptual develop-
ment with hands-on, unplugged activities have strong potential to improve student en-
gagement, retention, and long-term proficiency.

Future work should continue to refine these tasks, test their effectiveness in di-
verse classroom environments, and provide educators with targeted professional de-
velopment. Ultimately, fostering CT and AT through mathematics instruction equips 
students not only for success in school but also for the challenges of a digital and 
data-driven world.
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