Information technology (IT) is transforming the world. Therefore, exposing students to computing at an early age is important. And, although computing is being introduced into schools, students from a low socio-economic status background still do not have such an opportunity. Furthermore, existing computing programs may need to be adjusted in accordance to the specific characteristics of these students in order to help them to achieve the learning goals. Aiming at bringing computing education to all middle and high-school students, we performed a systematic literature review, in order to analyze the content, pedagogy, technology, as well as the main findings of instructional units that teach computing in this context. First results show that these students are able to learn computing, including concepts ranging from algorithms and programming languages to artificial intelligence. Difficulties are mainly linked to the lack of infrastructure and the lack of pre-existing knowledge in using IT as well as creating computing artifacts. Solutions include centralized teaching in assistive centers as well as a stronger emphasis on unplugged strategies. However, there seems to be a lack of more research on teaching computing to students from a low socio-economic status background, unlocking their potential as well to foster their participation in an increasing IT market.
This study investigated the effects of 3D model building activities with block codes on students' spatial thinking and computational thinking skills. The study group consists of 5th grade students in a secondary school in the Central Anatolia region of Turkey. For the study, a pretest-posttest control group was utilized within the experimental design. A total of 66 students participated, 23 in the experimental group and 43 in the control group. While the activities prepared on the Tinkercad platform were applied in the experimental group, the courses were taught using the traditional teaching method in the control group. The study covers a period of three-weeks in the course information technologies and software. The study used the computational thinking levels scale and spatial thinking test scales as data collection instruments. The data was analyzed using both descriptive statistics and independent samples t-tests. Based on the study findings, there were no significant differences observed in the levels of computational thinking skills levels and spatial thinking test scores between the experimental and control groups.
Even though working with data is as important as coding for understanding and dealing with complex problems across multiple fields, it has received very little attention in the context of Computational Thinking. This paper discusses an approach for bridging the gap between Computational Thinking with Data Science by employing and studying classification as a higher-order thinking process that connects the two. To achieve that, we designed and developed an online constructionist gaming tool called SorBET which integrates coding and database design enabling students to interpret, organize, and analyze data through game play and game design. The paper presents and discusses the results of a pilot study that aimed to investigate the data practices secondary students develop through playing and modifying SorBET games, and to determine the impact of game modding on student critical engagement with CT. According to the results, students developed and used certain data practices such as data interpretation and data model design to become better players or to design an interesting classification game. Moreover, game modding process motivated students to question the original games’ content, leading them to develop a critical stance towards the game data model and representations.
There can be many reasons why students fail to answer correctly to summative tests in advanced computer science courses: often the cause is a lack of prerequisites or misconceptions about topics presented in previous courses. One of the ITiCSE 2020 working groups investigated the possibility of designing assessments suitable for differentiating between fragilities in prerequisites (in particular, knowledge and skills related to introductory programming courses) and advanced topics. This paper reports on an empirical evaluation of an instrument focusing on data structures, among those proposed by the ITiCSE working group. The evaluation aimed at understanding what fragile knowledge and skills the instrument is actually able to detect and to what extent it is able to differentiate them. Our results support that the instrument is able to distinguish between some specific fragilities (e.g., value vs. reference semantics), but not all of those claimed in the original report. In addition, our findings highlight the role of relevant skills at a level between prerequisite and advanced skills, such as program comprehension and reasoning about constraints. We also suggest ways to improve the questions in the instrument, both by improving the distractors of the multiple choice questions, and by slightly changing the content or phrasing of the questions. We argue that these improvements will increase the effectiveness of the instrument in assessing prerequisites as a whole, but also to pinpoint specific fragilities.
In this paper, we present an activity to introduce the idea of public-key cryptography and to make pre-service STEM teachers explore fundamental informatics and mathematical concepts and methods. We follow the Theory of Didactical Situations within the Didactical Engineering methodology (both widely used in mathematics education research) to design and analyse a didactical situation about asymmetric cryptography using graphs. Following the phases of Didactical Engineering, after the preliminary analysis of the content, the constraints and conditions of the teaching context, we conceived and analysed the situation a priori, with a particular focus on the milieu (the set of elements students can interact with) and on the choices for the didactical variables. We discuss their impact on the problem-solving strategies the participants need to elaborate to decrypt an encrypted message. We implemented our situation and collected qualitative data. We then analysed a posteriori the different stategies that participants used. The comparison of the a posteriori analysis with the a priori analysis showed the learning potential of the activity. To elaborate on different problem-solving strategies, the participants need to explore and understand several concepts and methods from mathematics, informatics, and the frontier of the two disciplines, also moving between different semiotic registers.
Educational data mining is widely deployed to extract valuable information and patterns from academic data. This research explores new features that can help predict the future performance of undergraduate students and identify at-risk students early on. It answers some crucial and intuitive questions that are not addressed by previous studies. Most of the existing research is conducted on data from 2-3 years in an absolute grading scheme. We examined the effects of historical academic data of 15 years on predictive modeling. Additionally, we explore the performance of undergraduate students in a relative grading scheme and examine the effects of grades in core courses and initial semesters on future performances. As a pilot study, we analyzed the academic performance of Computer Science university students. Many exciting discoveries were made; the duration and size of the historical data play a significant role in predicting future performance, mainly due to changes in curriculum, faculty, society, and evolving trends. Furthermore, predicting grades in advanced courses based on initial pre-requisite courses is challenging in a relative grading scheme, as students’ performance depends not only on their efforts but also on their peers. In short, educational data mining can come to the rescue by uncovering valuable insights from academic data to predict future performance and identify the critical areas that need significant improvement.
The creative programming language Processing can be used as a generative architectural design tool, which allows the designer to write design instructions (algorithms) and compute them, obtaining graphical outputs of great interest. This contribution addresses the inclusion of this language in the architecture curriculum, within the context of digital culture and alternative approaches to how digital tools are used and learned. It studies the different processes related to Computational Thinking that are triggered in the prototyping of computer applications and that lead to creativity. The similarity between architectural design and programming is analysed, both in problem solving (abstraction, decomposition, iterative revisions -debugging-, etc.) and in the use of mechanisms of a digital nature (loops, randomness, etc.). The results of the design and testing of a pilot course are shown, in which the way of teaching, learning and using this programming language is based on the graphical representation of problems through sketches.
In today's world, the ability to think computationally is essential. The skillset expected of a computer scientist is no longer solely based on the old stereotype but also a crucial skill for adapting to the future. This perspective presents a new educational challenge for society. Everyone must have a positive attitude toward understanding and using these skills daily. One thousand two hundred seven documents about computational thinking (CT) may be found while searching the Scopus database from 1987 to 2023. Data from Scopus were analyzed using VOSviewer software. This study educates academics by delving into the fundamentals of what is known about the CT of visual and quantitative research skills. This approach allows for a more in-depth look at the literature and a better understanding of the research gap in CT. This bibliometrics analysis demonstrates that (1) research on CT is common to all sciences and will develop in the future; (2) the majority of articles on CT are published in journals in the fields of education, engineering, science and technology, computing and the social sciences; (3) the United States is the most dominant country in CT publications with a variety of collaborations; (4) keywords that often appear are CT, engineering, education, and mathematics, and (5) research on CT has developed significantly since 2013. Our investigation reveals the beginnings and progression of the academic field of research into CT. Furthermore, it offers a road map indicating how this study area will expand in the coming years.
With the development of technology allowing for a rapid expansion of data science and machine learning in our everyday lives, a significant gap is forming in the global job market where the demand for qualified workers in these fields cannot be properly satisfied. This worrying trend calls for an immediate action in education, where these skills must be taught to students at all levels in an efficient and up-to-date manner. This paper gives an overview of the current state of data science and machine learning education globally and both at the high school and university levels, while outlining some illustrative and positive examples. Special focus is given to vocational education and training (VET), where the teaching of these skills is at its very beginning. Also presented and analysed are survey results concerning VET students in Slovenia, Serbia, and North Macedonia, and their knowledge, interests, and prerequisites regarding data science and machine learning. These results confirm the need for development of efficient and accessible curricula and courses on these subjects in vocational schools.
This research investigates university students’ success in their first programming course (CS1) in relation to their motivation, mathematical ability, programming self-efficacy, and initial goal setting. To our knowledge, these constructs have not been measured in a single study before in the Finnish context. The selection of the constructs is in line with the statistical model that predicts student performance (“PreSS”) (Quille and Bergin, 2018). The constructs are compared with various demographic and background variables, such as study major, prior programming experience, and average weekly working hours. Some of the main results of this study are as follows: (1) students generally entered with a high interest in programming and high motivation, but these factors did not increase during the course, i.e., interest in programming did not increase. (2) Having prior experience yielded higher initial programming self-efficacy, grade expectations, and spending less time on tasks, but not better grades (although worse neither). While these results can be seen as preliminary (and alarming in some parts), they give rise to future research for investigating possible expectation–performance gaps in CS1 and later CS studies. As our dataset accumulates, we also hope to be able to construct a valid success prediction model.