Integrating Computational Thinking and Data Science: The Case of Modding Classification Games
Volume 23, Issue 1 (2024), pp. 101–124
Pub. online: 15 March 2024
Type: Article
Published
15 March 2024
15 March 2024
Abstract
Even though working with data is as important as coding for understanding and dealing with complex problems across multiple fields, it has received very little attention in the context of Computational Thinking. This paper discusses an approach for bridging the gap between Computational Thinking with Data Science by employing and studying classification as a higher-order thinking process that connects the two. To achieve that, we designed and developed an online constructionist gaming tool called SorBET which integrates coding and database design enabling students to interpret, organize, and analyze data through game play and game design. The paper presents and discusses the results of a pilot study that aimed to investigate the data practices secondary students develop through playing and modifying SorBET games, and to determine the impact of game modding on student critical engagement with CT. According to the results, students developed and used certain data practices such as data interpretation and data model design to become better players or to design an interesting classification game. Moreover, game modding process motivated students to question the original games’ content, leading them to develop a critical stance towards the game data model and representations.