This study investigated the effects of 3D model building activities with block codes on students' spatial thinking and computational thinking skills. The study group consists of 5th grade students in a secondary school in the Central Anatolia region of Turkey. For the study, a pretest-posttest control group was utilized within the experimental design. A total of 66 students participated, 23 in the experimental group and 43 in the control group. While the activities prepared on the Tinkercad platform were applied in the experimental group, the courses were taught using the traditional teaching method in the control group. The study covers a period of three-weeks in the course information technologies and software. The study used the computational thinking levels scale and spatial thinking test scales as data collection instruments. The data was analyzed using both descriptive statistics and independent samples t-tests. Based on the study findings, there were no significant differences observed in the levels of computational thinking skills levels and spatial thinking test scores between the experimental and control groups.
Even though working with data is as important as coding for understanding and dealing with complex problems across multiple fields, it has received very little attention in the context of Computational Thinking. This paper discusses an approach for bridging the gap between Computational Thinking with Data Science by employing and studying classification as a higher-order thinking process that connects the two. To achieve that, we designed and developed an online constructionist gaming tool called SorBET which integrates coding and database design enabling students to interpret, organize, and analyze data through game play and game design. The paper presents and discusses the results of a pilot study that aimed to investigate the data practices secondary students develop through playing and modifying SorBET games, and to determine the impact of game modding on student critical engagement with CT. According to the results, students developed and used certain data practices such as data interpretation and data model design to become better players or to design an interesting classification game. Moreover, game modding process motivated students to question the original games’ content, leading them to develop a critical stance towards the game data model and representations.
The creative programming language Processing can be used as a generative architectural design tool, which allows the designer to write design instructions (algorithms) and compute them, obtaining graphical outputs of great interest. This contribution addresses the inclusion of this language in the architecture curriculum, within the context of digital culture and alternative approaches to how digital tools are used and learned. It studies the different processes related to Computational Thinking that are triggered in the prototyping of computer applications and that lead to creativity. The similarity between architectural design and programming is analysed, both in problem solving (abstraction, decomposition, iterative revisions -debugging-, etc.) and in the use of mechanisms of a digital nature (loops, randomness, etc.). The results of the design and testing of a pilot course are shown, in which the way of teaching, learning and using this programming language is based on the graphical representation of problems through sketches.
In today's world, the ability to think computationally is essential. The skillset expected of a computer scientist is no longer solely based on the old stereotype but also a crucial skill for adapting to the future. This perspective presents a new educational challenge for society. Everyone must have a positive attitude toward understanding and using these skills daily. One thousand two hundred seven documents about computational thinking (CT) may be found while searching the Scopus database from 1987 to 2023. Data from Scopus were analyzed using VOSviewer software. This study educates academics by delving into the fundamentals of what is known about the CT of visual and quantitative research skills. This approach allows for a more in-depth look at the literature and a better understanding of the research gap in CT. This bibliometrics analysis demonstrates that (1) research on CT is common to all sciences and will develop in the future; (2) the majority of articles on CT are published in journals in the fields of education, engineering, science and technology, computing and the social sciences; (3) the United States is the most dominant country in CT publications with a variety of collaborations; (4) keywords that often appear are CT, engineering, education, and mathematics, and (5) research on CT has developed significantly since 2013. Our investigation reveals the beginnings and progression of the academic field of research into CT. Furthermore, it offers a road map indicating how this study area will expand in the coming years.
This study aims to examine the impact of interdisciplinary computational thinking (CT) skills training on primary school teachers’ perceptions of CT skills. The sample of the study consisted of 30 primary school teachers in Istanbul. In this study, where quantitative and qualitative methods were used together, qualitative data were obtained from the teacher identification form. Quantitative data were obtained from the scale for CT skills. After the pre-test was applied to the study group, “CT Skills Training” was applied. During the training, the basic concepts of CT skills and the subskills were covered theoretically and practically. From the quantitative data, the education applied was determined to have had a positive effect on the primary school teachers' perceptions of CT skills. From the qualitative data, it was determined that the participants had a positive opinion about the applied training and thought that they gained skills related to CT.
Computational Thinking (CT) has emerged in recent years as a thematic trend in education in many countries and several initiatives have been developed for its inclusion in school curricula. There are many pedagogical strategies to promote the development of elementary school students’ CT skills and knowledge. Unplugged learning tasks, block-based programming projects, and educational robotics are 3 of the most used strategies. This paper aimed to analyze the effect of Scratch-based activities, developed during one scholar year, on the computational thinking skills developed and concepts achieved by 4th-grade students. The study involved 189 students from two school clusters organized into an experimental group and a control group. To assess students’ computational knowledge, the Beginners Computational Thinking Test developed by Several Zapata-Cáceres et al. (2020) was used. The results indicate statistically significant differences between the groups, in which students in the experimental group (who performed activities with scratch) scored higher on the test than students in the control group (who did not use Scratch).
In Education 4.0, a personalized learning process is expected, and that students are the protagonist. In this new education format, it is necessary to prepare students with the skills and competencies of the 21st-Century, such as teamwork, creativity, and autonomy. One of the ways to develop skills and competencies in students can be through block programming, which can be used with emerging technologies such as robotics and IoT and in an interdisciplinary way. Thus, block programming in High School is important because it is possible to work on aspects such as problem-solving, algorithmic thinking, among other skills (Perin et al., 2021), which are necessary in the contemporary world. Thus, our Systematic Mapping Study (SMS) aims to identify which block programming tools support of Education 4.0 in High School. Overall, 46 papers were selected, and data were extracted. Based on the results, a total of 24 identified block programming tools that can be used in high school collaboratively and playfully and with an interdisciplinary methodology. Moreover, it was possible to see that most studies address block programming with high school students, demonstrating a lack of studies that address block programming with teachers. This SMS contributed to identifying block programming tools, emerging technologies, audience (teacher or student), and learning spaces where block programming is being worked on.
This study aims to provide a deeper understanding about the Bebras tasks, which is one of the computational thinking (CT) unplugged activities, in terms of age level, task category, and CT skills. Explanatory sequential mixed method was adopted in the study in order to collect data according to the research questions. The participants of the study were 113,653 school students from different age levels. Anonymous data was collected electronically from the Turkey 2019 Bebras challenge. Factor analysis was employed to reveal the construct validity to determine how accurately the tool measured the abstract psychological characteristics of the participants. In addition, the item discrimination index was calculated to measure how discriminating the items in the challenge were. Qualitative data gathered through the national Bebras workshop was analysed according to content analysis. The findings highlighted some interesting points about the implications of the Bebras Challenge for Turkey, which are discussed in detail. Furthermore, common problems of Bebras tasks are identified and possible suggestions for improvement are listed.
Problem-solving and critical thinking are associated with 21st century skills and have gained popularity as computational thinking skills in recent decades. Having such skills has become a must for all ages/grade levels. This study was conducted to examine the effects of grade level, gender, chronotype, and time on computational thinking skills. To this end, the study was designed to follow a longitudinal research model. Participants were 436 secondary school students. Computational thinking test scores were collected from the students at certain time intervals. Results indicate that computational thinking skills are independent of gender, time, and chronotype but differ significantly depending on grade level. The interaction between grade level and time of testing also has a significant impact on computational thinking skills. The difference in grade level can be interpreted as taking an information technologies course increases computational thinking. The results suggest that such courses should be promoted to children at a young age. The joint effect of gender, grade level, and chronotype were not statistically significant and it is recommended to conduct future studies to investigate this result.
The new Croatian Informatics curriculum, which introduces computational thinking concepts into learning outcomes has been put into practice. A computational thinking assessment model reflecting the learning outcomes of the Croatian curriculum was created using an evidence-centered design approach. The possibility of assessing the computational thinking concepts, abstraction, decomposition, and algorithmic thinking, in an actual classroom situation and examples of such assessment is increasingly coming to the forefront of computer science educational research. Precisely for that purpose, the research was conducted. Research data are collected through the test and questionnaire of 407 pupils (10 middle schools, age 12), analysed by exploratory factor analysis and non-parametric tests. Results showed that the presented model was suitable to assess the understanding of the concepts of abstraction and algorithmic thinking, independently of the previous experience with programming languages and pupil's gender, while assessment of decomposition needs more work and improvement, some recommendations are provided. Also, it received positive feedback from pupils and teachers what implicated that such an assessment model could help teachers in building a real-time measurement instrument.