Teaching computational thinking in K-12 as a 21th century skill is becoming increasingly important. Computational thinking describes a specific way of reasoning building on concepts and processes derived from algorithms and programming. One way to teach these concepts is games as an effective and efficient alternative. This article presents SplashCode, a low-cost board game to reinforce basic algorithms and programming concepts. The game was developed in a systematic way following an instructional design process, and applied and evaluated in a Brazilian public school with a total of 65 students (grade 5 to 9). First results indicate that the game can have a positive impact on motivation, learning experience, and students' learning, as well as contribute positively to social interaction, relevance, and fun. Results of this study may assist in the selection of games as an instructional strategy and/or in the development of new games for teaching computational thinking.
Diverse initiatives have emerged to popularize the teaching of computing in K-12 mainly through programming. This, however, may not cover other important core computing competencies, such as Software Engineering (SE). Thus, in order to obtain an overview of the state of the art and practice of teaching SE competences in K-12, we carried out a systematic mapping study. We identified 17 instructional units mostly adopting the waterfall model or agile methodologies focusing on the main phases of the software process. However, there seems to be a lack of details hindering large-scope adoption of these instructional units. Many articles also do not report how the units have been developed and/or evaluated. However, results demonstrating both the viability and the positive contribution of initiating SE education already in K-12, indicate a need for further research in order to improve computing education in schools contributing to the popularization of SE competencies.