The article describes a study carried out on pupils aged 12-13 with no prior programming experience. The study examined how they learn to use loops with a fixed number of repetitions. Pupils were given a set of programming tasks to solve, without any preparatory or accompanying instruction or explanation, in a block-based visual programming environment. Pupils’ programs were analyzed to identify possible misconceptions and factors influencing them. Four misconceptions involving comprehension of the loop concept and repeat command were detected. Some of these misconceptions were found to have an impact on a pupil’s need to ask the computer to check the correctness of his/her program. Some of the changes made to tasks had an impact on the frequency of these misconceptions and could be the factors influencing them. Teachers and course book writers will be able to use the results of our research to create an appropriate curriculum. This will enable pupils to acquire and subsequently deal with misconceptions that could prevent the correct understanding of created concepts.
This article presents an experience report regarding the application of an Inclusive Model of Development of Accessible Learning Objects, in the Mathematics discipline, to help 8th year Elementary School children, to perform calculations with natural numbers. The Learning Object was developed using Scratch and accessibility guidelines to include students with disabilities. The model evaluated the learning, teaching, usability, and accessibility of objects. The results demonstrate the efficiency, interaction and improvement in students' performance in Mathematics, through the use of objects in the teaching and learning process.
The management of contemporary software projects is unfeasible without the support of a Project Management (PM) tool. In order to enable the adoption of PM tools in practice, teaching its usage is important as part of computer education. Aiming at teaching PM tools, several approaches have been proposed, such as the development of educational PM tools. However, such approaches are typically limited with respect to content coverage and instructional support. In this context, an important technique is the provision of instructional feedback, which is essential in order to help the students to learn based on the evaluation of their own actions. In order to take advantage of this technique, this article proposes its employment in an Instructional Unit, being integrated into the PM tool dotProject+, providing automated feedback based on the project plan being developed with the tool. This technique has been evaluated through a series of case studies.
Reflective practice is considered to play an important role in students' learning as they encounter difficult material. However, students in this situation sometimes do not behave reflectively, but in less productive and more problematic ways. This paper investigates how educators can recognize and analyze students' confusion, and determine whether students are responding reflectively or defensively. Qualitative data for the investigation comes from an upper-level undergraduate software engineering and design course that students invariably find quite challenging. A phenomenological analysis of the data, based on Heidegger's dynamic of rupture, provides useful insight to students' experience. A comparison between that approach and a sampling of classic sources in scholarship on learning, reflectiveness, and defensiveness has implications for teaching and education research in software design - and more generally. In addition, a clearer understanding of the concepts presented in this paper should enable faculty to bring a more sophisticated analysis to student feedback, and lead to a more informed and productive interpretation by both instructor and administration.