Creativity has emerged as an important 21st-century competency. Although it is traditionally associated with arts and literature, it can also be developed as part of computing education. Therefore, this article -presents a systematic mapping of approaches for assessing creativity based on the analysis of computer programs created by the students. As result, only ten approaches reported in eleven articles have been encountered. These reveal the absence of a commonly accepted definition of product creativity customized to computer education, confirming only originality as one of the well-established characteristics. Several approaches seem to lack clearly defined criteria for effective, efficient and useful creativity assessment. Diverse techniques are used including rubrics, mathematical models and machine learning, supporting manual and automated approaches. Few performed a comprehensive evaluation of the proposed approach regarding their reliability and validity. These results can help instructors to choose and adopt assessment approaches and guide researchers by pointing out shortcomings.
This paper investigates unplugged computing as a formal pedagogical strategy to teaching computing to a Maltese secondary class of Year 9 students. It aims at identifying the effectiveness of this pedagogy outlining the strengths and weaknesses in its application, taking into consideration the level of attainment for students, as well as the impact on teachers’ lesson preparation. This research study is based on the delivery of five unplugged activities. It analyses students’ reaction when exposed to such unplugged activities to assess the viability of using this pedagogy when teaching computing concepts in a formal setting. The study concludes that unplugged computing is an effective pedagogical strategy that helps attain a high level of engagement and student involvement, encouraging teamwork and collaboration. Students experience a wide attention span and good retention through the constant link of computing scenarios to real-life examples and the use of tangible non-computing related objects. Notwithstanding, the study also identifies certain limitations of this pedagogy, mainly that it is not sufficient as a standalone pedagogy, but needs to be applied in conjunction with other pedagogies to be able to cover all the expected learning objectives of the curriculum.
Programming is one of the most important aspects of a Computing course. Teaching programming is a challenging task due to a number of factors, ranging from lack of student problem solving skills to different teaching methods. This paper focuses on Maltese Computing teachers’ perspectives about the difficulties encountered when teaching programming to secondary school students in order to determine whether introducing programming to secondary school students through creating mobile-based games is an effective method to teach programming constructs. A resource pack consisting of various activities using MIT App Inventor 2 was created which incorporated constructivist approaches to teaching. This resource pack was reviewed by the teachers and their feedback was collected by means of a case study. The teachers agreed that developing mobile-based games would be highly stimulating to their students but there were uncertainties how this would affect students with different learning abilities and due to a general lack of computational thinking and problem-solving skills by most students.
The objective of this article is to present the development and evaluation of dETECT (Evaluating TEaching CompuTing), a model for the evaluation of the quality of instructional units for teaching computing in middle school based on the students' perception collected through a measurement instrument. The dETECT model was systematically developed and evaluated based on data collected from 16 case studies in 13 different middle school institutions with responses from 477 students. Our results indicate that the dETECT model is acceptable in terms of reliability (Cronbach's alpha ?=.787) and construct validity, demonstrating an acceptable degree of correlation found between almost all items of the dETECT measurement instrument. These results allow researchers and instructors to rely on the dETECT model in order to evaluate instructional units and, thus, contribute to their improvement and to direct an effective and efficient adoption of teaching computing in middle school.
The teaching of sorting algorithms is an essential topic in undergraduate computing courses. Typically the courses are taught through traditional lectures and exercises involving the implementation of the algorithms. As an alternative, this article presents the design and evaluation of three educational games for teaching Quicksort and Heapsort. The games have been evaluated in a series of case studies, including 23 applications of the games in data structures courses at the Federal University of Santa Catarina with the participation of a total of 371 students. The results provide a first indication that such educational games can contribute positively to the learning outcome on teaching sorting algorithms, supporting the students to achieve learning on higher levels as well as to increase the students' motivation on this topic. The social interaction the games promote allows the students to cooperate or compete while playing, making learning more fun.