This research investigates university students’ success in their first programming course (CS1) in relation to their motivation, mathematical ability, programming self-efficacy, and initial goal setting. To our knowledge, these constructs have not been measured in a single study before in the Finnish context. The selection of the constructs is in line with the statistical model that predicts student performance (“PreSS”) (Quille and Bergin, 2018). The constructs are compared with various demographic and background variables, such as study major, prior programming experience, and average weekly working hours. Some of the main results of this study are as follows: (1) students generally entered with a high interest in programming and high motivation, but these factors did not increase during the course, i.e., interest in programming did not increase. (2) Having prior experience yielded higher initial programming self-efficacy, grade expectations, and spending less time on tasks, but not better grades (although worse neither). While these results can be seen as preliminary (and alarming in some parts), they give rise to future research for investigating possible expectation–performance gaps in CS1 and later CS studies. As our dataset accumulates, we also hope to be able to construct a valid success prediction model.
Introductory programming courses (CS1) are difficult for novices. Inspired by Problem solving followed by instruction and Productive Failure approaches, we define an original “necessity-driven” learning design. Students are put in an apparently well-known situation, but this time they miss an essential ingredient (the target concept) to solve the problem. Then, struggling to solve it, they experience the necessity of that concept. A direct instruction phase follows. Finally, students return to the problem with the necessary knowledge to solve it. In a typical CS1 learning path, we recognise a challenging “rollercoaster of abstraction”. We provide examples of learning sequences designed with our approach to support students when the abstraction changes (both upward and downward) inside the programming language, for example, when a new construct (and the related syntactical, conceptual, and strategic knowledge) is introduced. Also, we discuss the benefits of our design in light of Informatics education literature.
Controlling complexity through the use of abstractions is a critical part of problem solving in programming. Thus, becoming proficient with procedural and data abstraction through the use of user-defined functions is important. Properly using functions for abstraction involves a number of other core concepts, such as parameter passing, scope and references, which are known to be difficult. Therefore, this paper aims to study students’ proficiency with these core concepts, and students’ ability to apply procedural and data abstraction to solve problems. We collected data from two years of an introductory Python course, both from a questionnaire and from two lab assignments. The data shows that students had difficulties with the core concepts, and a number of issues solving problems with abstraction. We also investigate the impact of using a visualization tool when teaching the core concepts.
Motivating students of the Nintendo generation for Computer Science can only be achieved by providing them with an exiting and fresh CS1 course. The article describes the experience of redesigning the introductory programming course at ETH Zurich and shows how the combination of state-of-the-art visualizations with open project assignments enlivens students' enthusiasm for programming. It shows the setup and the involved libraries, provides example applications that were built in the course, and presents the data gathered in the evaluation of the open assignment.