Due to technological advancements, robotics is findings its way into the classroom. However, workload for teachers is high, and teachers sometimes lack the knowledge to implement robotics education. A key factor of robotics education is peer learning, and having students (near-)peers teach them robotics could diminish workload. Therefore, this study implemented near-peer teaching in robotics education. 4 K10-11 secondary school students were teachers to 83 K5-6 primary school students. The intervention included 4 3-hour robotics lessons in Dutch schools. Primary school students completed a pre- and post-intervention questionnaire on their STEM-attitudes and near-peer teaching experience, and a report on their learning outcomes. Interaction with near-peer teachers was observed. After the lessons, a paired-samples t-test showed that students had a more positive attitude towards engineering and technology. Students also reported a positive near-peer teaching experience. Conventional content analysis showed that students experienced a gain in programming and robotics skill after the lessons, and increased conceptual understanding of robotics. The role the near peer teachers most frequently fulfilled was formative assessor. Near-peer teachers could successfully fulfil a role as an engaging information provider. This study shows that near-peer teachers can effectively teach robotics, diminishing workload for teachers. Furthermore, near-peer robotics lessons could lead to increased STEM-attitudes.
This paper describes a study of students' meaningful learning of the engineering design process during their participation in robotics activities. The population consisted of middle-school students (ages 13-15 years) who participated in the FIRST® LEGO® League competition. The methodology used was qualitative, including observations and interviews. The analysis was based on the Revised Bloom Taxonomy. Almost all the groups demonstrated meaningful learning, although some reached higher levels than others. Most of the groups demonstrated the understanding/applying level during each of the design process phases (searching and decision making, construction and testing, diagnosing and debugging), some demonstrated the analyzing/evaluating level, but only a few demonstrated the higher level of creating. Factors that seemed to play a role in the students' learning include: (a) the teaching or mentoring style; (b) the absence of a robotics textbook; (c) the extra-curricular competition-oriented nature of the activities; and (d) the unstable nature of the design of the robot.
Notwithstanding the hype surrounding the enthusiasm and rush that characterises the employment of robotics in formal educational contexts, their use is described as nothing less than fragmented. In the circumstances that processes of adoption and application of digital tools are clearly outpacing their accommodation and enactment in formal educational settings, a teacher-training framework for the integration of robotics in primary schools is being proposed.
Anticipated to be editable in context by teachers, a mediating tool whose actions are defined by the Activity Theory is presented to provide a framework for activities, aims, learning outcomes and suggestive complementing hardware. Thematically built around a constructionist approach, and having a long-standing tradition in early childhood education, it should simultaneously enhance the student and teacher learning experience towards robotics in a meaningful manner.