Although Machine Learning (ML) has already become part of our daily lives, few are familiar with this technology. Thus, in order to help students to understand ML, its potential, and limitations and to empower them to become creators of intelligent solutions, diverse courses for teaching ML in K-12 have emerged. Yet, a question less considered is how to assess the learning of ML. Therefore, we performed a systematic mapping identifying 27 instructional units, which also present a quantitative assessment of the students’ learning. The simplest assessments range from quizzes to performance-based assessments assessing the learning of basic ML concepts, approaches, and in some cases ethical issues and the impact of ML on lower cognitive levels. Feedback is mostly limited to the indication of the correctness of the answers and only a few assessments are automated. These results indicate a need for more rigorous and comprehensive research in this area.
Due to technological advancements, robotics is findings its way into the classroom. However, workload for teachers is high, and teachers sometimes lack the knowledge to implement robotics education. A key factor of robotics education is peer learning, and having students (near-)peers teach them robotics could diminish workload. Therefore, this study implemented near-peer teaching in robotics education. 4 K10-11 secondary school students were teachers to 83 K5-6 primary school students. The intervention included 4 3-hour robotics lessons in Dutch schools. Primary school students completed a pre- and post-intervention questionnaire on their STEM-attitudes and near-peer teaching experience, and a report on their learning outcomes. Interaction with near-peer teachers was observed. After the lessons, a paired-samples t-test showed that students had a more positive attitude towards engineering and technology. Students also reported a positive near-peer teaching experience. Conventional content analysis showed that students experienced a gain in programming and robotics skill after the lessons, and increased conceptual understanding of robotics. The role the near peer teachers most frequently fulfilled was formative assessor. Near-peer teachers could successfully fulfil a role as an engaging information provider. This study shows that near-peer teachers can effectively teach robotics, diminishing workload for teachers. Furthermore, near-peer robotics lessons could lead to increased STEM-attitudes.
Nowadays, SPOCs (Small Private Online Courses) have been used as complementary methods to support classroom teaching. SPOCs are courses that apply the usage of MOOCs (Massive Open Online Courses), combining classroom with online education, making them an exciting alternative for contexts such as emergency remote teaching. Although SPOCs have been continuously proposed in the software engineering teaching area, it is crucial to assess their practical applicability via measuring the effectiveness of this resource in the teaching-learning process. In this context, this paper aims to present an experimental evaluation to investigate the applicability of a SPOC in a Verification, Validation, and Software Testing course taught during the period of emergency remote education during the COVID-19 pandemic in Brazil. Therefore, we conducted a controlled experiment comparing alternative teaching through the application of a SPOC with teaching carried out via lectures. The comparison between the teaching methods is made by analyzing the students’ performance during the solving of practical activities and essay questions on the content covered. In addition, we used questionnaires to analyze students’ motivation during the course. Study results indicate an improvement in both motivation and performance of students participating in SPOC, which corroborates its applicability to the software testing teaching area.
In programming problem solving activities, sometimes, students need feedback to progress in the course, being positively affected by the received feedback. This paper presents an overview of the state of the art and practice of the feedback approaches on introductory programming. To this end, we have carried out a systematic literature mapping to understand and discuss the main approaches for providing and evaluating feedback used in the learning of novice programmers in the problem solving activity. Thus, according to a formal protocol, an automatic search was performed for papers from 2016 to 2021. As a result, 39 studies were selected for the final analysis. As a result, we propose three different categorizations: the main approaches to providing feedback, the main methods used in the evaluation and the main aspects and effects of the evaluated feedback.