In today’s society, creativity plays a key role, emphasizing the importance of its development in K-12 education. Computing education may be an alternative for students to extend their creativity by solving problems and creating computational artifacts. Yet, there is little systematic evidence available to support this claim, also due to the lack of assessment models. This article presents SCORE, a model for the assessment of creativity in the context of computing education in K-12. Based on a mapping study, the model and a self-assessment questionnaire are systematically developed. The evaluation, based on 76 responses from K-12 students, indicates a high internal reliability (Cronbach’s alpha = 0.961) and confirmed the validity of the instrument suggesting only the exclusion of 3 items that do not seem to be measuring the concept. As such, the model represents a first step aiming at the systematic improvement of teaching creativity as part of computing education.
The objective of this article is to present the development and evaluation of dETECT (Evaluating TEaching CompuTing), a model for the evaluation of the quality of instructional units for teaching computing in middle school based on the students' perception collected through a measurement instrument. The dETECT model was systematically developed and evaluated based on data collected from 16 case studies in 13 different middle school institutions with responses from 477 students. Our results indicate that the dETECT model is acceptable in terms of reliability (Cronbach's alpha ?=.787) and construct validity, demonstrating an acceptable degree of correlation found between almost all items of the dETECT measurement instrument. These results allow researchers and instructors to rely on the dETECT model in order to evaluate instructional units and, thus, contribute to their improvement and to direct an effective and efficient adoption of teaching computing in middle school.