User-centricity and usability are a premise of digitalization, a current trend for business model innovation based on advanced digital technologies. The article addresses a gap in the literature, in which descriptions of the cases of updating university curricula in usability are lacking. This gap also exists in the practice. The study uses the example of a project for revising the content of usability courses at the University of Turku as a case. The research objective is to explore an integrative approach to usability education. For this, we consider the data collected via interviews with the faculty teaching usability subjects. Thematic analysis is applied to examine the interview outcomes. Recommendations as to updating usability curricula are provided.
Technology-enhanced learning generally focuses on the cognitive rather than the affective domain of learning. This multi-method evaluation of the INBECOM project (Integrating Behaviourism and Constructivism in Mathematics) was conducted from the point of view of affective learning levels of Krathwohl et al. (1964). The research questions of the study were: (i) to explore the affective learning experiences of the three groups of participants (researchers, teachers and students) during the use of a mobile game UFractions and an intelligent tutoring system ActiveMath to enhance the learning of fractions in mathematics; and (ii) to determine the significance of the relationships among the affective learning experiences of the three groups of participants (researchers, teachers and students) in the INBECOM project.
This research followed a sequential, equal status, multi-mode research design and methodology where the qualitative data were derived from the interviews with researchers, teachers and students, as well as from learning diaries, feelings blogs, and observations (311 documents) across three contexts (South Africa, Finland, and Mozambique). The qualitative data was quantitized (Saldaña, 2009), i.e. analysed deductively in an objective and quantifiable way as instances on an ExcelT spreadsheet for statistical analyses. All the data was explored from the affective perspective by labelling the feelings participants experienced according to the affective levels of the Krathwohl et al. (1964) framework.
The researchers concluded that: (i) the research participants not only received information, but actively participated in the learning process; responded to what they learned; associated value to their acquired knowledge; organised their values; elaborated on their learning; built abstract knowledge; and adopted a belief system and a personal worldview; and (ii) affirmation of affective learning at all five levels was recognised among the three groups of participants. The study raised a number of issues which could be addressed in future, like how affective levels of learning are intertwined with cognitive levels of learning while learning mathematics in a technology-enhanced learning environment; and how pedagogical models which take into account both cognitive and affective aspects of learning support deep learning.
The increasing number of children who need special education in Finland also requires an increasing amount of resources from teachers and a restructuring of the education system. Technology can be a part of the solution to this resource problem; however, for the technological solution to work, technologies need to be designed and implemented in new ways. Technologies used in special education in Finland can roughly be divided into four main categories; assistive technologies, communication technologies, and learning software. Last and the newest category concretizing technologies, such as educational robotics, have successfully been used in the Technologies for Children with Individual Needs Project. Possibilities provided by educational robotics have been extensive, not only because of the technology itself, but also because of how the technology has been implemented in innovative projects with school students. From this point of view, students with individual educational needs as well as those involved in inclusive education and harmonized school days could benefit from the use of technology.
Distance learning programs have rapidly increased during the past few decades. In fall 2000 the University of Joensuu started to offer distance Computer Science (CS) studies to the high school students in surrounding rural areas of Joensuu. In this program high school students study the first year's university level CS studies over the web simultaneously with their regular high school studies. We describe the creation process of our virtual curriculum which is based the so-called Candle scheme. The Candle scheme search the most essential principles needed in on-line course design, supporting a student locally in her authentic learning needs via electronic tools in a light way. With the Candle scheme we have successfully focused in our design process on the most essential parts of the virtual study process. Our experiences of the Candle scheme in the creation process of the on-line CS program during years 2000-2002 indicate that the scheme is the functional one and expandable to other contexts as well.