In this study, we aimed to investigate the impact of cooperative learning on the computational thinking skills and academic performances of middle school students in the computational problem-solving approach. We used the pretest-posttest control group design of the quasi-experimental method. In the research, computational problem-solving activities regarding 6th graders' goals of the "heat and matter" unit, were applied individually by Group 1 and cooperative learning by Group 2. These activities required students to use computational thinking skills and code using the Python programming language. The study involved 34 students from the 6th grade of a private middle school located in the capital city of Turkey. The Computational Thinking Test (CTt) and an academic achievement test were used as pre-tests and post-tests to monitor students' computational thinking skills and academic performances. Additionally, computational problem-solving activities were scored to track the progress of students' computational thinking abilities. Non-parametric Mann Whitney U and Wilcoxon T-tests were utilized to analyze the progression of pupils' computational thinking abilities and academic success, and ANCOVA was used to analyze CTt scores. Qualitative data were collected through semi-structured interviews at the end of the process to determine students' views on the computational problem-solving process. Results revealed a significant increase in students' academic achievement and computational thinking skills in both groups. A comparison of post-test scores showed no significant difference between groups. It is anticipated that the research results will make meaningful contributions to the literature concerning the progress of computational thinking skills in secondary school students.
This study reports the findings of a program that aims to develop pre-service science teachers’ computational problem-solving skills and views on using information and communications technology in science education. To this end, pre-service science teachers were trained on computational thinking, computational problem solving, designing an algorithm, and Python coding, and then they were asked to solve problem situations determined within the science education program using the computational problem-solving process. The study was conducted in a faculty of education in Turkey and carried out conducted in an elective course in the spring semester of the 2019 - 2020 academic year (in an online platform due to the Covid-19 Pandemic). 38 pre-service science teachers were included in the study. In this process, pre-service science teachers’ conceptual development levels regarding computational thinking and their views regarding the use of ICT in schools were collected quantitatively. The development of computational problem-solving skills of pre-service science teachers was scored by a rubric developed in this study. According to the analyzes, pre-service science teachers increased knowledge of computational thinking (t = -5,969, p = .000), enhanced views regarding the use of ICT in schools (t = -2,436, p = .020), and developed computational problem-solving skills (χ2(2) = 9.000, p = 0,011). These findings have the potential to provide evidence on how computational problem-solving skills can be integrated into science teacher education programs.