This review paper presents a systematic literature review on the use of Augmented Reality (AR) in engineering education, and specifically in student’s spatial ability training, for the last decade. Researchers have explored the benefits of AR, and its application has been of increasing interest in all levels of education. Engineering students tend to have difficulties in acquiring visualization skills, and hence, AR is gaining momentum in enhancing students’ learning achievements. This paper aims to present valuable information to researchers, tutors and software developers of learning technology systems concerning the advantages and limitations of AR in spatial ability training, the incorporation of adaptivity and personalization in AR applications as well as the aspects of spatial ability having been evaluated using AR and the prevalent evaluation methods for AR applications. To this direction, a total of thirty-two (32) studies were reviewed, having been published since 2010. The findings reveal an increase in the number of studies during the last three years. One major conclusion is the improvement of learners’ spatial ability using AR in educational settings, and the noted challenge is the need for more learning content. One research gap that has been identified is the lack of personalization in the developed applications, offering space for future research. Concluding, this area is under-researched, and thus, there is scope for a lot of improvement.
The purpose of this study is to investigate the effects of applications created using a web-based 3D design environment on the spatial visualisation and mental rotation abilities of secondary school students. A total of 63 school students from the sixth grade participated in the study. The researchers applied a mixed research method including both quantitative and qualitative measures. The Spatial Visualisation Test, Mental Rotation Test, and Santa Barbara Solids Test, which concurrently measure spatial orientation and spatial relations, were used as tools to measure the different components of spatial ability prior to and after the treatment application. Following the treatment, a focus group interview using structured questions was conducted. A statistically significant difference showed an increase in all three test scores of the students; also, the students stated that they were satisfied with being able to design and create something new.