Computing as a discipline has common roots with mathematics and written languages, and computing as a way of thinking and handling has been integral to human culture since ever. This is not only a reasonable argument for convincing society to consider informatics as one of the very fundamental pillars of education, but it also puts the potential contributions of teaching informatics in schools into the correct perspective in the context of science and humanities. Many European countries are switching from teaching information technologies to informatics education during the current second decade of this century. Informatics curriculum is becoming a central part of school education. We explain and design a way of developing informatics curriculum that offer the critical competences new generations need to survive and thrive in todays’ knowledge society and will allow them to contribute to the future development of society. These competences also strongly support the development of their intellectual potential and creativity. Our design of informatics curriculum takes into account the interaction with other scientific disciplines as well with the subject didactics, pedagogy and psychology. The starting point is merging constructionism and critical thinking. Constructionism with its “learning by doing” and “learning by getting things to work” enables designing a teaching process in which students acquire knowledge by creating products, analysing the properties and the functionality of their own products, and finally derive motivation to improve these products. Critical thinking asks us not to teach products of science and technology and their application, but to teach the creative process of their development. To implement this approach, we use the historical method allowing the students to learn by productive failures in the process of searching for a solution. To organize the process of learning and make the different steps available to the appropriate age groups we take into account the cognitive dimensions of the revised taxonomy of Bloom. To illustrate how the combination of all these concepts works we present a detailed curriculum for algorithm design, programming, robotics, and communication in networks.
The aim of the article is to determine in the studied groups the multiple intelligence distribution defined in the 1980s by Howard Gardner. The research was conducted in three groups of respondents. The first study group was first-year students of computer science, the second was master (2nd degree) students, educationally 4 years older than the first group. Their intelligence distributions were compared with the intelligence distributions of the third group – graduates of the same university, the same field of study after several years of work in positions consistent with their education. Participants filled one of the multiple intelligence tests selected by answering 24 questions. A group of approximately 110 students and approximately 40 IT employees were examined. As there were statistically justified differences in several significant sub intelligences, a discussion was held on the forms of educational impact on student development paths. The research was carried out in conditions of full voluntary participation in the test and on the basis of self-assessment according to questions suggested in one of the online sources. According to the authors, the results seem interesting, although surprising.
eLearning is fast progressing scientific field proposing novel and specific approaches in a range of domains. It is well established practice in universities, schools and organizations for delivering interactive, adaptive and flexible training, taking advantage of contemporary and emerging technologies. Informatics is a continuously evolving science presenting its theoretical and practical advances applicable in various research areas, including in eLearning. The paper presents an exploration focused on the symbiotic connection between Informatics and eLearning that leads to contemporary and innovative solutions, facilitating and automating a wide variety of activities at information processing. The term eLearning Informatics is conceptualized and explained as a scientific field outlining the current research achievements and further directions for development. The applied research methodology is based on outlining the main vision in the domain eLearning Informatics through utilization of bibliometric approach and construction of bibliometric networks as well as on detailed examination of topic-related scientific papers.
This study investigated the role of using unplugged computing activities on developing computational thinking (CT) skills of 6th-grade students. The unplugged computing classroom activities were based on the Bebras challenge, an international contest that aims to promote CT and informatics among school students of all ages. Participants of the study were fifty-three 6th-grade students from two public middle schools in Istanbul. The unplugged computing activities involved the tasks with three different difficulty levels covering the CT processes found to be common in CT definitions in the literature. To evaluate students’ CT skills, two equivalent tests were constructed from Bebras tasks considering the same parameters (difficulty levels and CT processes). The results showed that students’ post-test scores were significantly higher than their pre-test scores. There were not any significant differences between students’ scores in terms of gender, and there was no interaction effect between students’ CT scores and their gender.
The paper focuses on the parallels, which are rooted in the simultaneous development of mathematics and informatics. Both mathematics and informatics are based on problem-solving. However, the approaches to determining problems, solution techniques and interpretation of results are different. The paper shows different approaches of mathematics and informatics for solving a simple problem from the informatics competition. It was presented for students, who would be future informatics teachers, and it has become the beginning of the discovery of unexpected relationships and rules' chain, the source of successive tasks, and various methods of their solution. The paper brings the results of the constructivist teaching of students in the form of a fictional interview of mathematician and informatician. Fictional cooperation of a mathematician and an informatician in analysing and solving problems will allow for a detailed analysis and comparison of both fields, which will lead to determining both common and different elements.
These days ICT has penetrated into almost all sectors of the economy and society of Mongolia. More and more effort and attention is being paid to integrating ICT into the education sector. The current education reforms have a big component related to ICT, which includes the development of a Master plan for ICT in the Education sector, addressing the issues of ICT policy, infrastructure, hardware, software, human resource development and capacity building, content development etc. This paper describes the current state of ICT in general education in Mongolia. The paper also tries to address strengths, weaknesses, opportunities, and threats in ICT education.
Information and communications technologies today are used in virtually any university course when students prepare their papers. ICT is also needed after people are graduated from university and enter the job market. This author is an instructor in the field of informatics related to health care and social sciences at the Riga Stradins University. In practice, he has found that after completing informatics courses (IC) at the university level, students and practicing specialists at various levels find it hard to decide on what data processing method to use in order to interpret extracted results in the relevant area of specialisation. There are various data processing methods in the literature, presented individually and without adequate linkages. The author has found in practice that when such assignments are handled, there is closer linkage among data processing methods than the literature would suggest.
In this article, the authors deal with the following issues: (1) how assignments given during informatics courses at the university level can be integrated with the relevant area of specialisation by making use of professional standards, guidebooks to studies in other courses, descriptions and scholarly publications so as to help students and practicing specialists to take decisions on data processing methods, their use, and the interpretation of their results; (2) how to ensure that educational data related to the area of specialisation are obtained on the basis of statistics in scholarly publications; (3) what kind of content is to be used for students of health care and the social sciences; (4) how to choose methods to resolve data processing issues; (5) what are the recommended principles for evaluating the knowledge, skills and talents of students? The views that are presented in this paper are those of the authors or of other authors.
The goal of this literature study is to give some preliminary answers to the questions that aim to uncover the Pedagogical Content Knowledge (PCK) of Informatics Education, with focus on Programming. PCK has been defined as the knowledge that allows teachers to transform their knowledge of the subject into something accessible for their students. The core questions to uncover this knowledge are: what are the reasons to teach programming; what are the concepts we need to teach programming; what are the most common difficulties/misconceptions students encounter while learning to program; and how to teach this topic. Some of the answers found are, respectively: enhancing students' problem solving skills; programming knowledge and programming strategies; general problems of orientation; and possible ideal chains for learning computer programming. Because answers to the four questions are in a way not connected with each other, PCK being an unexplored field in Informatics Education, we need research based efforts to study this field.
The educational system in Austria is very multifaceted, and academic secondary schools represent an important part in it. This type of schools, in German called ``Gymnasium'', covers the age-group from 10 to 18 years and provides pupils and students with a broad and general education. For more than twenty years, informatics and computers have increasingly penetrated into secondary education. Austrian academic secondary schools have much freedom to cope with this challenging task within their autonomy. In this paper, a snapshot of the current situation is given with the main emphasis on the 9th grade. Only in this age-group, the ``PISA-age'', informatics is a compulsory subject. The implementation of additional IT/informatics classes at lower secondary level is exclusively the result of autonomous decisions in schools. Recently, a web-based nationwide online research has been conducted. In this paper some preliminary results are presented.
Mongolia started using Information and Communication Technology (ICT) in secondary education relatively late. The computer training and informatics has been included as a subject in the secondary school curriculum in Mongolia since 1988 and in the university curriculum since 1982. This paper presents current situation of informatics education in Mongolia. SWOT (Strength, Weakness, Opportunity, and Threat) analysis of Informatics Education in Mongolia, conclusions and future recommendations are also presented.