Connecting theory and practice in teaching is sometimes difficult, as it requires expensive or delicate equipment, thus limiting the teacher to giving demonstrations in which students are passive participants. Numerical mathematics, as an applied discipline, should be taught on real world examples. By using inexpensive Arduino hardware, we can create simple experiments that are easily reproduced by students. Furthermore, the experiments generate tangible data, which can be processed numerically. The choice of the software used for numerical processing is also an important issue. We present several exercises in numerical mathematics that are based on experiments in electrical engineering with Arduino, and show how to turn them into motivational examples. We also present our experiences in teaching using the developed exercises, as well as some important points and conclusions, which stem from discussions with the participating students and teachers.
In this study we investigate the effects of long-term technology enhanced learning (TEL) in mathematics learning performance and fluency, and how technology enhanced learning can be integrated into regular curriculum. The study was conducted in five second grade classes. Two of the classes formed a treatment group and the remaining three formed a control group. The treatment group used TEL in one mathematics lesson per week for 18 to 24 months. Other lessons were not changed. The difference in learning performance between the groups tested using a post-test; for that, we used a mathematics performance test and a mathematics fluency test. The results showed that the treatment group using TEL got statistically significantly higher learning performance results compared to the control group. The difference in arithmetic fluency was not statistically significant even though there was a small difference in favor of the treatment group. However, the difference in errors made in the fluency test was statistically significant in favor of the treatment group.