Due to technological advancements, robotics is findings its way into the classroom. However, workload for teachers is high, and teachers sometimes lack the knowledge to implement robotics education. A key factor of robotics education is peer learning, and having students (near-)peers teach them robotics could diminish workload. Therefore, this study implemented near-peer teaching in robotics education. 4 K10-11 secondary school students were teachers to 83 K5-6 primary school students. The intervention included 4 3-hour robotics lessons in Dutch schools. Primary school students completed a pre- and post-intervention questionnaire on their STEM-attitudes and near-peer teaching experience, and a report on their learning outcomes. Interaction with near-peer teachers was observed. After the lessons, a paired-samples t-test showed that students had a more positive attitude towards engineering and technology. Students also reported a positive near-peer teaching experience. Conventional content analysis showed that students experienced a gain in programming and robotics skill after the lessons, and increased conceptual understanding of robotics. The role the near peer teachers most frequently fulfilled was formative assessor. Near-peer teachers could successfully fulfil a role as an engaging information provider. This study shows that near-peer teachers can effectively teach robotics, diminishing workload for teachers. Furthermore, near-peer robotics lessons could lead to increased STEM-attitudes.
Computer science concepts have an important part in other subjects and thinking computationally is being recognized as an important skill for everyone, which leads to the increasing interest in developing computational thinking (CT) as early as at the comprehensive school level. Therefore, research is needed to have a common understanding of CT skills and develop a model to describe the dimensions of CT. Through a systematic literature review, using the EBSCO Discovery Service and the ACM Digital Library search, this paper presents an overview of the dimensions of CT defined in scientific papers. A model for developing CT skills in three stages is proposed: i) defining the problem, ii) solving the problem, and iii) analyzing the solution. Those three stages consist of ten CT skills: problem formulation, abstraction, problem reformulation, decomposition, data collection and analysis, algorithmic design, parallelization and iteration, automation, generalization, and evaluation.
The Computer Science Unplugged activities and project has been an influential STEM (Science, Technology, Engineering & Mathematics) initiative, providing enrichment and teaching activities supporting computational thinking. Many of its activities are suitable for children. One of the most popular Unplugged activities is "Kid Krypto", invented by Mike Fellows and Neal Koblitz. Kid Krypto demonstrates the mathematics underlying public-key cryptography without using advanced mathematics. The paper gives an example of a Kid Krypto-style encryption system that is based on disjoint cycles in a graph or network and which is accessible to a very young audience. Also described is the original Kid Krypto system which is based on a version of dominating set called perfect code. The paper urges research scientists to participate in mathematical sciences communication and outreach.