One of the biggest challenges that higher learning institutions face today is to improve the quality of managerial decisions. The managerial decision making process becomes more complex as the complexity of educational entities increase. Educational institute seeks more efficient technology to better manage and support decision making procedures or assist them to set new strategies and plan for a better management of the current processes. One way to effectively address the challenges for improving the quality is to provide new knowledge related to the educational processes and entities to the managerial system. This knowledge can be extracted from historical and operational data that reside in the educational organization's databases using the techniques of data mining technology. Data mining techniques are analytical tools that can be used to extract meaningful knowledge from large data sets. This paper presents the capabilities of data mining in the context of higher educational system by i) proposing an analytical guideline for higher education institutions to enhance their current decision processes, and ii) applying data mining techniques to discover new explicit knowledge which could be useful for the decision making processes.
This paper presents model-based assessment and forecasting of the Lithuanian education system in the period of 2001-2010. In order to obtain satisfactory forecasting results, constructing of models used for these aims should be grounded on some interactive data mining. Data mining of data stored in the system of the Lithuanian teacher's database and of data from other sources representing the state of education system and the demographic changes in Lithuania was used. The models cover the estimation of data quality in the databases, the analysis of flow of teachers and pupils, the clustering of schools, the model of dynamics of pedagogical staff and pupils, and the quality analysis of teachers. The main results of forecasting and integrated analysis of the Lithuanian teachers' database with other data reflecting the state of the education system and demographic changes in Lithuania are presented.