This autoethnographic paper is part of a special issue trying to answer the question “How to design or choose languages for programming novices?” I will describe howmy programming language Hedy was created, how the initial design goals were formed, how my perspectives on learning and teaching changed along the way, and how Hedy changed with it. The paper also discusses how the Hedy community came to be. Hedy was initially made for my own classroom and teaching, but quickly attracted a community, which I learned a lot from. This special issue has given me a unique opportunity, after 5 years of working on Hedy, to reflect on the process and to learn from it myself, and will hopefully also allow other programming language designers to learn from.
Although Machine Learning (ML) is integrated today into various aspects of our lives, few understand the technology behind it. This presents new challenges to extend computing education early to ML concepts helping students to understand its potential and limits. Thus, in order to obtain an overview of the state of the art on teaching Machine Learning concepts in elementary to high school, we carried out a systematic mapping study. We identified 30 instructional units mostly focusing on ML basics and neural networks. Considering the complexity of ML concepts, several instructional units cover only the most accessible processes, such as data management or present model learning and testing on an abstract level black-boxing some of the underlying ML processes. Results demonstrate that teaching ML in school can increase understanding and interest in this knowledge area as well as contextualize ML concepts through their societal impact.
The European Commission Science Hub has been promoting Computational Thinking (CT) as an important 21st century skill or competence. However, "despite the high interest in developing computational thinking among schoolchildren and the large public and private investment in CT initiatives, there are a number of issues and challenges for the integration of CT in the school curricula". On the other hand, the Digital Competence (DC) Framework 2.0 (DigCom) is promoted in the same European Commission Science Hub portal. It shows that both topics have many things in common. Thus, there is the need of research on the relationship between CT and digital competence.
The goal of this paper is to analyse and discuss the relationship between DC and CT, and to help educators as well as educational policy makers to make informed decisions about how CT and DC can be included in their local institutions. We begin by defining DC and CT and then discuss the current state of both phenomena in education in multiple countries in Europe. By analysing official documents, we try to find the underlying commonness in both DC and CT, and discover all possible connections between them. Possible interconnections between the component groups of approaches are presented in Fig.
This work is part of a research project whose main objective is to understand the impact that the use of Information and Communication Technology (ICT) has on the teaching and learning process on the subject of Physics. We will show that, with the use of a storm simulator, physics students improve their learning process on one hand they understand storm phenomenon, and on the other hand they assimilate in better way physics ideas. Computer technology is a positive supplement to bridge the gap between education and the technological world in which we live. Computer-assisted technologies at the university offer students a great access to information, an eager motivation to learn, a jump-start on marketable job skills and an enhanced quality of class work.
This work investigates the effect of computer use in the memory process in young and adults under the Perceptual and Memory experimental conditions. The memory condition involved the phases acquisition of information and recovery, on time intervals (2 min, 24 hours and 1 week) on situations of pre and post-test (before and after the participants took part on a Basic Computing course), in which the participants studied the map of Brazil during 7 minutes and the estimates of different areas of Brazilian states were performed according to the magnitude estimation method, without the presence of the map. On the Perceptual condition, the estimates were made in the presence of the Brazilian map. The study made possible to verify that the use of a computer, as a new activity enables a differentiation on the memory process in relation to the different experimental conditions proposed and to the time intervals used between acquisition, processing and information recovery, showing that the use of a computer as a pedagogical tool may promote the improvement of the memory process in academic activities.