Computational Thinking (CT) has emerged in recent years as a thematic trend in education in many countries and several initiatives have been developed for its inclusion in school curricula. There are many pedagogical strategies to promote the development of elementary school students’ CT skills and knowledge. Unplugged learning tasks, block-based programming projects, and educational robotics are 3 of the most used strategies. This paper aimed to analyze the effect of Scratch-based activities, developed during one scholar year, on the computational thinking skills developed and concepts achieved by 4th-grade students. The study involved 189 students from two school clusters organized into an experimental group and a control group. To assess students’ computational knowledge, the Beginners Computational Thinking Test developed by Several Zapata-Cáceres et al. (2020) was used. The results indicate statistically significant differences between the groups, in which students in the experimental group (who performed activities with scratch) scored higher on the test than students in the control group (who did not use Scratch).
In this study we investigate the effects of long-term technology enhanced learning (TEL) in mathematics learning performance and fluency, and how technology enhanced learning can be integrated into regular curriculum. The study was conducted in five second grade classes. Two of the classes formed a treatment group and the remaining three formed a control group. The treatment group used TEL in one mathematics lesson per week for 18 to 24 months. Other lessons were not changed. The difference in learning performance between the groups tested using a post-test; for that, we used a mathematics performance test and a mathematics fluency test. The results showed that the treatment group using TEL got statistically significantly higher learning performance results compared to the control group. The difference in arithmetic fluency was not statistically significant even though there was a small difference in favor of the treatment group. However, the difference in errors made in the fluency test was statistically significant in favor of the treatment group.
Computer programming is perceived as an important competence for the development of problem solving skills in addition to logical reasoning. Hence, its integration throughout all educational levels, as well as the early ages, is considered valuable and research studies are carried out to explore the phenomenon in more detail. In light of these facts, this study is an exploratory effort to investigate the effect of Scratch programming on 5th grade primary school students' problem solving skills. Moreover, the researchers wondered what 5th grade primary school students think about programming. This study was carried out in an explanatory sequential mixed methods design with the participation of 49 primary school students. According to the quantitative results, programming in Scratch platform did not cause any significant differences in the problem solving skills of the primary school students. There is only a non-significant increase in the mean of the factor of "self- confidence in their problem solving ability". When the thoughts of the primary students were considered, it can be clearly stated that all the students liked programming and wanted to improve their programming. Finally, most of the students found the Scratch platform easy to use.
Text mining has been used for various purposes, such as document classification and extraction of domain-specific information from text. In this paper we present a study in which text mining methodology and algorithms were properly employed for academic dishonesty (cheating) detection and evaluation on open-ended college exams, based on document classification techniques. Firstly, we propose two classification models for cheating detection by using a decision tree supervised algorithm. Then, both classifiers are compared against the result produced by a domain expert. The results point out that one of the classifiers achieved an excellent quality in detecting and evaluating cheating in exams, making possible its use in real school and college environments.
Muscular strength tests are of fundamental importance for the physiotherapeutic diagnosis and a difficult issue for learning. Also, there are very few softwares specifically developed for teaching/learning and diagnosis in the Physical Therapy area. This work describes the development and evaluation of MuStreT, an educational multimedia computer tool for Physical Therapy students. MuStreT integrates hypertext, movie clips, narrations, animations, self-evaluation questionnaires, and was inspired by the constructivism concepts. The software was developed using Unified Modeling Language concepts and implemented using animation and authoring tools. MuStreT was quantitatively evaluated by Physical Therapy students and qualitatively evaluated by Physical Therapy professionals/lecturers and Computer Science students. Results show that learning was increased using MuStreT, thanks to its interactivity potential and multimedia features. This work suggests that the use of informatics in Physical Therapy education has a great potential for improving the teaching-learning process.