We live in a digital age, not least accelerated by the COVID-19 pandemic. It is all the more important in our society that students learn and master the key competence of algorithmic thinking to understand the informatics concepts behind every digital phenomena and thus is able to actively shape the future. For this to be successful, concepts must be identified that can convey this key competence to all students in such a way that algorithmic thinking is integrated in the subject of informatics - beyond a pure programming course. Furthermore, based on the Legitimation Code Theory, semantic waves provide a way to develop and review lesson plans. Therefore, we planned a workshop, that follow the phases of a semantic wave addressing algorithmic problems using a blockbased programming language. Considering this, we suggest the so-called SWAT concept (Semantic Wave Algorithmic Thinking concept), which is carried out and analyzed in a workshop with students. The workshop was carried out in online format in an 8th grade of a high school during a coronavirus lockdown. The level of algorithmic thinking was measured using a pretest and posttest both in the treatment group and in a control group and with the help of the approximate adjusted fractional Bayes factors for testing informative hypotheses statistically and through a reductive, qualitative content analysis of the students’ work results (worksheets and created programs) evaluated. The semantic wave concept was measured using several cognitive load ratings of the students during the workshop and also statistically evaluated with the approximate adjusted fractional Bayes factors for testing informative hypotheses, as well as a qualitative content analysis of the worksheets. Results of this pilot study provide first insights, that the SWAT-concept can be used in combination of unplugged and plugged parts.
In Poland, talent development is organized mainly outside or alongside the educational system. A large number of privately funded informatics contests and extra-curricular talent development programs for highly motivated students are available. However, traditional competitions also exist including national informatics Olympiads and competitions mainly supported by the Ministry of Education. In particular, we stimulate interest in informatics by organizing the annual nationwide InfoSukces contest. This contest was organized for the first time in 2015 when informatics education in Poland was experiencing difficulties recruiting new students, who were in growing demand on the labor market. The aim of the contest is now to make students aware that the jobs of the future require problem-solving, digital skills, and creative thinking, all of which can be taught through informatics. The contest also provides a platform for a unique series of activities, the goal of which is to support partnerships and knowledge flow between schools and universities. This article provides a case study of the final stage of the InfoSukces contest, which involves the participants developing a “work of art” in the Scratch programming environment. It also presents the holistic method for quantitative evaluation of the students’ creative visual-based programming projects.
There are many important issues in informatics and many agree that algorithms and programming are most important issues that need to be included in informatics education (Dagiene and Jevsikova, 2012). In this paper, we propose how some of these issues can be easily taught using the notion of a formal system which consists of axioms and inference rules by which theorems can be proved. As is argued in (Dagiene and Jevsikova, 2012), we can introduce important topics in informatics using puzzle-like examples and students do not need to have prerequisites for learning. The materials presented in this paper have been used in a college-level elective class titled Hypertext and Computability in our university since the fall semester of 2008 and we believe that the contents proposed in this paper can be easily used to teach beginner students without technical backgrounds.
The first specification for the informatics Matura examination in Poland was published in 2000, and since May 2005 the examination has been organized every year. This article includes some reflections and remarks about formulating examination tasks and pupils' difficulties in solving the tasks collected by the author during her work as an examiner. In the article, four examination tasks from 2008 are considered. These remarks could be useful especially for informatics teachers.
It is easy to underestimate the difficulties of using floating-point numbers in programming. This is especially the case in pre-university informatics education and competitions, where one is often led to believe that floating-point arithmetic is a good approximation of the real number system. However, most of the mathematical laws valid for real numbers break down when applied to floating-point numbers. We explain this break-down and illustrate it with four simple examples.
In informatics education and competitions, the students need to be trained, programming assignments need to be formulated, submitted programs need to be evaluated, and variations among computing platforms need to be handled. We show that the use of floating-point numbers gives rise to various kinds of non-trivial difficulties in all these areas. Coping with such difficulties would require that teachers, students, and organizers gain experience in numerical mathematics.
We strongly recommend to avoid the use of floating-point numbers in pre-university education and competitions whenever possible. If you do want to use floating-point numbers, then study the literature of numerical mathematics and be prepared to do a convincing error analysis.