In a previous publication we examined the connections between high-school computer science (CS) and computing higher education. The results were promising—students who were exposed to computing in high school were more likely to take one of the computing disciplines. However, these correlations were not necessarily causal. Possibly those students who took CS courses, and especially high-level CS courses in high school, were already a priori inclined to pursue computing education. This uncertainty led us to pursue the current research. We aimed at finding those factors that induced students to choose CS at high school and later at higher-education institutes. We present quantitative findings obtained from analyzing freshmen computing students' responses to a designated questionnaire. The findings show that not only did high-school CS studies have a major impact on students’ choice whether to study computing in higher education—it may have also improved their view of the discipline.
Source code plagiarism is an emerging issue in computer science education. As a result, a number of techniques have been proposed to handle this issue. However, comparing these techniques may be challenging, since they are evaluated with their own private dataset(s). This paper contributes in providing a public dataset for comparing these techniques. Specifically, the dataset is designed for evaluation with an Information Retrieval (IR) perspective. The dataset consists of 467 source code files, covering seven introductory programming assessment tasks. Unique to this dataset, both intention to plagiarise and advanced plagiarism attacks are considered in its construction. The dataset's characteristics were observed by comparing three IR-based detection techniques, and it is clear that most IR-based techniques are less effective than a baseline technique which relies on Running-Karp-Rabin Greedy-String-Tiling, even though some of them are far more time-efficient.
Programming is one of the basic subjects in most informatics, computer science mathematics and technical faculties' curricula. Integrated overview of the models for teaching programming, problems in teaching and suggested solutions were presented in this paper. Research covered current state of 1019 programming subjects in 715 study programmes at total of 218 faculties and 143 universities in 35 European countries that were analyzed. It was concluded that while most of the programmes highly support object-oriented paradigm of programming, introductory programming subjects are mainly based on imperative paradigm.
Games for learning are currently used in several disciplines for motivating students and enhancing their learning experience. This new approach of technology-enhanced learning has attracted researchers' and instructors' attention in the area of programming that is one of the most cognitively demanding fields in Computer Science. Several educational, or else serious, games for learning programming have been developed and the first results of their evaluation as a means of learning are quite positive. In this paper, we propose using arcade games as a means for learning programming. Based on this approach students first play a simple game, such as Snake or Tetris, study its code and then extend it. In a pilot study carried out in the context of an undergraduate programming course, students studied the source code of the well-known game Snake and extended it with new functionalities. The analysis of students' replies in a questionnaire showed that using arcade games as a means of learning programming concepts enhances students' motivation for learning programming, supports them in comprehending complex concepts and engages them in carrying out programming activities.
The International Olympiad in Informatics (IOI) aspires to be a science olympiad alongside such international olympiads in mathematics, physics, chemistry, and biology. Informatics as a discipline is well suited to a scientific approach and it offers numerous possibilities for competitions with a high scientific standing. We argue that, in its current form, the IOI fails to be scientific in the way it evaluates the work of the contestants.
In this paper, we describe the major ingredients of the IOI to guide further discussions. By presenting the results of an extensive analysis of two IOI competition tasks, we hope to create an awareness of the urgency to address the shortcomings. We offer some suggestions to raise the scientific quality of the IOI.