Content personalization in educational systems is an increasing research area. Studies show that students tend to have better performances when the content is customized according to his/her preferences. One important aspect of students particularities is how they prefer to learn. In this context, students learning styles should be considered, due to the importance of this feature to the adaptivity process in such systems. Thus, this work presents an efficient approach for personalization of the teaching process based on learning styles. Our approach is based on an expert system that implements a set of rules which classifies learning objects according to their teaching style, and then automatically filters learning objects according to students' learning styles. The best adapted learning objects are ranked and recommended to the student. Preliminary experiments suggest promising results.
The computer registration of physical and mechanical quantities gives a lot of possibilities for machine elements and mechanisms research. The advantages of well-organized computer laboratory both technical and methodological are namely: registration and on-line observation of a number of processes with random speed; replacement of high-cost specialized laboratory equipment; mathematical data processing; solving educational problems by modern technologies.
The purpose of this paper is to present the results of implementation of universal computer system for registering physical and mechanical quantities of elastic coupling, prepared in the laboratory of Machine Elements at the Higher School of Transport, Sofia, Bulgaria. The results are obtained by a special stand and the quantities are registered by a universal interface and software. After mathematical processing a number of characteristics and properties important for practice, such as diagram of friction and dumping in the coupling, shaft angle speed, etc. have been obtained.
The interface and software used allow to students to make the electrical scheme of measuring by them, to acquire basic knowledge for the problem investigated and to acquire self-confidence of solving such problems in practice.
A project is being developed with the main goal of creating an application of web server which allows students to use Mathematica software from their computers without the necessity of installing this software and of programming the necessary algorithms. The project consists of a set of mathematical models programmed with Mathematica and stored in a web server, which has been installed in a computer of our department. At the moment, it is possible to access to the web pages of the application from any computer of the intranet of our School.
The article examines update of modules of general IT (Informatics) studies under changes in secondary school programs. It is proposed to create distance-learning courses and use ``tools set'' principles. It will allow broadening the choice of study subjects and will create possibility for students from different faculties to choose the subjects and realization tools that better meet their needs and fields of studies. The developed materials will be available to all students and staff willing to improve IT skills through distance learning. Tasks and knowledge control will be unified in the whole University. The materials of updated Informatics courses will be presented in a virtual learning environment WebCT, including self-control tasks and tests. This will also be very useful for correspondence students.
Many factors influence teaching nowadays. Numbers of students are increasing, some students pay for studies and require more flexible teaching, more students have access to Internet, the learning material is changing rapidly (especially of subjects, related to information technologies), publishing industry is slow and expensive. All that stimulates usage of modern technologies in education. Virtual Learning Environments (VLEs) is one of the forms of e-learning. They open new ways of teaching and communication such as management of online learning, course delivery mechanism, communication and assessment tools, student tracking, access to electronic resources, etc. All these means correspond to the needs of contemporary teachers and students. VLEs have primarily been used for distance education but they are being used increasingly as supplement of traditional classroom based education. The author is interested in this latter aspect of VLEs.
The paper briefly reviews main types of Virtual Learning Environments and analyses the use of VLEs in Lithuania. The results of the investigation of two different learning environments - traditional (Web CT) and collaborative (FLE3) at the Vilnius Pedagogical University are also discussed in the article.