This study aims to provide a descriptive and bibliometric analysis of the trend of artificial intelligence (AI) application in the development of computational thinking (CT) skills in publications from 2007 to 2024. A total of 191 articles were obtained from Scopus database with certain keywords, and analyzed using Biblioshiny and VOSviewer. The results show that publications fluctuated in 2007–2014, then increased sharply since 2019, with a compound annual growth rate (CAGR) of 22.8% in the period 2019–2024. Early publications received the highest number of citations, such as in 2007 (18 citations), while recent studies show a more even distribution of citations, reflecting a shift from basic to applied research. This analysis highlights the important role of AI in enhancing CT development through learning strategies, educational technology, and cross-disciplines. The impact of AI implementation is seen in various aspects of education, such as learning strategies, educational media, and the relationship between CT and other skills. These findings demonstrate the importance of leveraging AI to support the development of CT in education, which can improve the quality of learning and enrich educational experiences globally.
This autoethnographic paper is part of a special issue trying to answer the question “How to design or choose languages for programming novices?” I will describe howmy programming language Hedy was created, how the initial design goals were formed, how my perspectives on learning and teaching changed along the way, and how Hedy changed with it. The paper also discusses how the Hedy community came to be. Hedy was initially made for my own classroom and teaching, but quickly attracted a community, which I learned a lot from. This special issue has given me a unique opportunity, after 5 years of working on Hedy, to reflect on the process and to learn from it myself, and will hopefully also allow other programming language designers to learn from.
In recent years, Artificial Intelligence (AI) has shown significant progress and its potential is growing. An application area of AI is Natural Language Processing (NLP). Voice assistants incorporate AI by using cloud computing and can communicate with the users in natural language. Voice assistants are easy to use and thus there are millions of devices that incorporates them in households nowadays. Most common devices with voice assistants are smart speakers and they have just started to be used in schools and universities. The purpose of this paper is to study how voice assistants and smart speakers are used in everyday life and whether there is potential in order for them to be used for educational purposes.
The European Commission Science Hub has been promoting Computational Thinking (CT) as an important 21st century skill or competence. However, "despite the high interest in developing computational thinking among schoolchildren and the large public and private investment in CT initiatives, there are a number of issues and challenges for the integration of CT in the school curricula". On the other hand, the Digital Competence (DC) Framework 2.0 (DigCom) is promoted in the same European Commission Science Hub portal. It shows that both topics have many things in common. Thus, there is the need of research on the relationship between CT and digital competence.
The goal of this paper is to analyse and discuss the relationship between DC and CT, and to help educators as well as educational policy makers to make informed decisions about how CT and DC can be included in their local institutions. We begin by defining DC and CT and then discuss the current state of both phenomena in education in multiple countries in Europe. By analysing official documents, we try to find the underlying commonness in both DC and CT, and discover all possible connections between them. Possible interconnections between the component groups of approaches are presented in Fig.
This work investigates the effect of computer use in the memory process in young and adults under the Perceptual and Memory experimental conditions. The memory condition involved the phases acquisition of information and recovery, on time intervals (2 min, 24 hours and 1 week) on situations of pre and post-test (before and after the participants took part on a Basic Computing course), in which the participants studied the map of Brazil during 7 minutes and the estimates of different areas of Brazilian states were performed according to the magnitude estimation method, without the presence of the map. On the Perceptual condition, the estimates were made in the presence of the Brazilian map. The study made possible to verify that the use of a computer, as a new activity enables a differentiation on the memory process in relation to the different experimental conditions proposed and to the time intervals used between acquisition, processing and information recovery, showing that the use of a computer as a pedagogical tool may promote the improvement of the memory process in academic activities.