When we “think like a computer scientist,” we are able to systematically solve problems in different fields, create software applications that support various needs, and design artefacts that model complex systems. Abstraction is a soft skill embedded in all those endeavours, being a main cornerstone of computational thinking. Our overview of abstraction is intended to be not so much systematic as thought provoking, inviting the reader to (re)think abstraction from different – and perhaps unusual – perspectives. After presenting a range of its characterisations, we will explore abstraction from a cognitive point of view. Then we will discuss the role of abstraction in a range of computer science areas, including whether and how abstraction is taught. Although it is impossible to capture the essence of abstraction in one sentence, one section or a single paper, we hope our insights into abstraction may help computer science educators to better understand, model and even dare to teach abstraction skills.
Due to technological advancements, robotics is findings its way into the classroom. However, workload for teachers is high, and teachers sometimes lack the knowledge to implement robotics education. A key factor of robotics education is peer learning, and having students (near-)peers teach them robotics could diminish workload. Therefore, this study implemented near-peer teaching in robotics education. 4 K10-11 secondary school students were teachers to 83 K5-6 primary school students. The intervention included 4 3-hour robotics lessons in Dutch schools. Primary school students completed a pre- and post-intervention questionnaire on their STEM-attitudes and near-peer teaching experience, and a report on their learning outcomes. Interaction with near-peer teachers was observed. After the lessons, a paired-samples t-test showed that students had a more positive attitude towards engineering and technology. Students also reported a positive near-peer teaching experience. Conventional content analysis showed that students experienced a gain in programming and robotics skill after the lessons, and increased conceptual understanding of robotics. The role the near peer teachers most frequently fulfilled was formative assessor. Near-peer teachers could successfully fulfil a role as an engaging information provider. This study shows that near-peer teachers can effectively teach robotics, diminishing workload for teachers. Furthermore, near-peer robotics lessons could lead to increased STEM-attitudes.
Computational thinking (CT) has been introduced in primary schools worldwide. However, rich classroom-based evidence and research on how to assess and support students’ CT through programming are particularly scarce. This empirical study investigates 4th grade students’ (N = 57) CT in a comparatively comprehensive and fine-grained manner by assessing their Scratch projects (N = 325) with a framework that was revised from previous studies to aim towards enhancing CT. The results demonstrate in detail the various coding patterns and code constructs the students programmed in assorted projects throughout a programming course and the extent to which they had conceptual encounters with CT. Notably, the projects indicated CT diversely, and the students altogether encountered dissimilar areas in CT. To target the acquisition of CT broadly, manifold programming activities are necessary to introduce in the classroom. Furthermore, we discuss the possibilities of applying the assessment framework employed herein to support CT education through Scratch in classrooms.
During the last decade, coding has come to the foreground of educational trends as a strong mean for developing students' Computational Thinking (or CT). However, there is still limited research that looks at coding and Computational Thinking activities through the lens of constructionism. In this paper, we discuss how the knowledge we already have from other thinking paradigms and pedagogical theories, such as constructionism and mathematical thinking, can inform new integrated designs for the cultivation of Computational Thinking. In this context, we explore students' engagement with MaLT (Machine Lab Turtle-sphere), an online environment of our design that integrates Logo textual programming with the affordances of dynamic manipulation, 3D graphics and camera navigation. We also present a study on how the integration of the above affordances can promote constructionist learning and lead to the development of CT skills along with the generation of meanings about programming concepts.
Coding and computational thinking have recently become compulsory skills in many school systems globally. Teaching these new skills presents a challenge for many teachers. A notable example of professional development designed using Constructionist principles to address this challenge is ScratchEd. Upon reflecting on her experiences designing and running ScratchEd, Karen Brennan identified five tensions faced by professional development providers, and proposed that these tensions could be used for scrutinising and critiquing professional development. In this paper we analyse, through the lens of Brennan's tensions, the process we have followed to design, evaluate and improve professional development. We argue that while we have experienced the same tensions, the extent to which we assess learning is a new tension that extends those identified by Brennan. There are strong reasons to assess teachers' knowledge, however, quantitative measures of learning could be at odds with Constructionism: as Papert argued in Mindstorms, constructionist educators should study their learning environments as anthropologists. Consequently, we have called this new tension the tension between anthropology and assessment.