In a previous publication we examined the connections between high-school computer science (CS) and computing higher education. The results were promising—students who were exposed to computing in high school were more likely to take one of the computing disciplines. However, these correlations were not necessarily causal. Possibly those students who took CS courses, and especially high-level CS courses in high school, were already a priori inclined to pursue computing education. This uncertainty led us to pursue the current research. We aimed at finding those factors that induced students to choose CS at high school and later at higher-education institutes. We present quantitative findings obtained from analyzing freshmen computing students' responses to a designated questionnaire. The findings show that not only did high-school CS studies have a major impact on students’ choice whether to study computing in higher education—it may have also improved their view of the discipline.
Considerable effort has been invested in innovative practices about teaching programming. Although the usefulness of metacognition in learning process is acknowledged, evidence demonstrating how metacognitive strategies effect in the programming classrooms is still very scarce. Given the importance of metacognitive strategies, this study seeks to examine the effect of the strategies to students’ performances in programming courses. The qualitative techniques were used to determine the participants’ programming performances and explicate their experiences about the role of the strategies. The results indicated that while almost half of the students’ programming performances were multistructural the other half was prestructural and unistructural categories of Solo taxonomy. The quality of the programming problems is found to have an important role in the development of both cognitive knowledge and cognitive regulation strategies. Furthermore, the cognitive potentials and problem solving habits of the students were also found to be effective on their metacognitive development. The implications of notable findings and directions for future studies were also discussed.
Computer science concepts have an important part in other subjects and thinking computationally is being recognized as an important skill for everyone, which leads to the increasing interest in developing computational thinking (CT) as early as at the comprehensive school level. Therefore, research is needed to have a common understanding of CT skills and develop a model to describe the dimensions of CT. Through a systematic literature review, using the EBSCO Discovery Service and the ACM Digital Library search, this paper presents an overview of the dimensions of CT defined in scientific papers. A model for developing CT skills in three stages is proposed: i) defining the problem, ii) solving the problem, and iii) analyzing the solution. Those three stages consist of ten CT skills: problem formulation, abstraction, problem reformulation, decomposition, data collection and analysis, algorithmic design, parallelization and iteration, automation, generalization, and evaluation.
This article gives a general framework for the understanding of the use of ICT in primary, secondary (vocational education excluded) and tertiary education in both Finland and Hong Kong. We describe the quantity and quality of ICT infrastructure and teachers' skills and attitudes towards it. Based on various surveys and scientific research, the pedagogical use of ICT is also studied from the pupils' and teachers' viewpoint. There is also some discussion on developmental challenges.
The International Olympiad in Informatics (IOI) aspires to be a science olympiad alongside such international olympiads in mathematics, physics, chemistry, and biology. Informatics as a discipline is well suited to a scientific approach and it offers numerous possibilities for competitions with a high scientific standing. We argue that, in its current form, the IOI fails to be scientific in the way it evaluates the work of the contestants.
In this paper, we describe the major ingredients of the IOI to guide further discussions. By presenting the results of an extensive analysis of two IOI competition tasks, we hope to create an awareness of the urgency to address the shortcomings. We offer some suggestions to raise the scientific quality of the IOI.