Intelligent Tutoring Systems (ITSs) for Math still use traditional data input methods: computers’ keyboard and mouse. However, students usually solve math tasks using paper and pen. Therefore, the gap between the manner the students work and the requirements imposed by these typing-based systems expose students to an extraneous cognitive load, impairing their learning. Our study investigates the impact of the data input method on students’ learning and fluency in solving equations using step-based math ITSs. More specifically, we have considered the standard typing and handwriting input methods. We hypothesized that the students would be more fluent using their handwriting with online recognition to solve math equations than using the typing input method. This fluency indicates a reduction in cognitive load, freeing working memory for logical reasoning instead of interface preconditions, leading to improved learning. We have conducted an experiment with 55 seventh-grade students from a private school to validate the hypothesis, randomly assigned to control and experimental groups. Each group used one of the input methods on two different devices (desktop computers and tablets). Although students using handwriting solved more equations and were faster than students who typed their equations, we could not find statistically significant differences in the learning between students that used typing or handwriting. Additionally, we have found that the input method used in a not ideal device (e.g., handwriting with a computer’s mouse instead of using a touch screen device) can negatively affect the students’ performance.
The introduction of the intelligence in teaching software is the object of this paper. In software elaboration process, one uses some learning techniques in order to adapt the teaching software to characteristics of student. Generally, one uses the artificial intelligence techniques like reinforcement learning, Bayesian network in order to adapt the system to the environment internal and external conditions, and allow this system to interact efficiently with its potentials user. The intention is to automate and manage the pedagogical process of tutoring system, in particular the selection of the content and manner of pedagogic situations. Researchers create a pedagogic learning agent that simplifies the manual logic and supports progress and the management of the teaching process (tutor-learner) through natural interactions.
Tutoring systems become complex and are offering varieties of pedagogical software as course modules, exercises, simulators, systems online or offline, for single user or multi-user. This complexity motivates new forms and approaches to the design and the modelling. Studies and research in this field introduce emergent concepts that allow the tutoring system to interact efficiently with potential users, by enhancing ergonomic service, performing response time and allowing better adaptability. The introduction of concepts such as multi-agent systems (MAS) allowed web technology to improve the process of modeling and designing for distance learning, and thus offer convincing solutions. The presentation of some relevant projects that associate MAS to the Web may highlight the benefits of this association in an innovative way.