The purpose of this study is to reveal the status of scientific publications on learning analytics from the past to the present in terms of bibliometric indicators. A total of 659 publications on the subject between the years 2011-2021 were found in the search using keywords after various screening processes. Publications were revealed through descriptive and bibliometric analyses. In the study, the distribution of publications by years and citation numbers, the most published journals on the subject, the most frequently cited publications, the most prolific countries, institutions and authors were examined. In addition, the cooperation between the countries, authors and institutions that publish on the subject was mentioned and a network structure was created for the relations between the keywords. It has been determined that research in this field has progressed and the number of publications and citations has increased over the years. As a result of the bibliometric analysis, it was concluded that the most influential countries in the field of learning analytics are the USA, Australia and Spain. The University of Edinburgh and Open University UK ranked first in terms of the number of citations and Monash University as the most prolific institutions in terms of the number of publications. According to the keyword co-occurrence analysis, educational data mining, MOOCS, learning analytics, blended learning, social network analysis keywords stand out in the field of learning analytics.
The Computational Thinking (CT) teaching approach allows students to practice problem-solving in a way that they can use the Computer Science mindset. In this sense, Collaborative Learning has a lot to contribute to educational activities involving the CT. This article presents the design and evaluation of a Collaborative Learning framework for the development of CT skills in students. To design the proposed strategy, several fundamental features of the Collaborative Learning concept of the literature have been studied and sketched. The strategy was applied to middle school students through a digital games programming workshop. Data were collected by three means: (1) collecting artifacts produced during activities; (2) recording of game programming sessions; and (3) applying a structured interview to students. The data analysis showed evidence that the strategy was able to mobilize Computational Thinking skills in addition to mobilizing collaborative skills in learners.
Advances in information and communication technologies have contributed to the increasing use of virtual learning environments as support tools in teaching and learning processes. Virtual platforms generate a large volume of educational data, and the analysis of this data allows useful information discoveries to improve learning and assist institutions in reducing disqualifications and dropouts in distance education courses. This article presents the results of a systematic mapping study aiming to identify how educational data mining, learning analytics, and collaborative groups have been applied in distance education environments. Articles were searched from 2010 to June 2020, initially resulting in 55,832 works. The selection of 51 articles for complete reading in order to answer the research questions considered a group of inclusion and exclusion criteria. Main results indicated that 53% of articles (27/51) offered intelligent services in the field of distance education, 47% (24/51) applied methods and analysis techniques in distance education environments, 21% (11/51) applied methods and analysis techniques focused on virtual learning environments logs, and 5% (3/51) presented intelligent collaborative services for identification and creation of groups. This article also identified research interest clusters with highlights for the terms recommendation systems, data analysis, e-learning, educational data mining, e-learning platform and learning management system.
This case study aims at ensuring preservice science teachers to acquire experience by creating paper-based mind maps (PB-MM) and digital mind maps (D-MM) in technology education and to reveal their opinions on these mind mapping techniques. A total of 32 preservice science teachers, enrolled in the undergraduate program of Science Teaching at a university in Turkey, participated in this study. During the first three weeks of the six-week study, participants created PB-MM for certain subjects in science education. For the rest of the weeks, they created D-MM by using Coggle. As data collection tool, a form, consisting of open-ended questions, was used in this study. The obtained results demonstrated that the participants generally reported positive opinions including that mind maps are beneficial and useful tools in reinforcing, assessing and visualizing learning in general, making lessons more entertaining as well as offering ease of use. It was also concluded that students can also use mind maps in teaching of other topics such as “Vitamins”, “The Earth and the Universe” and “Systems” in particular, as well as in events like meetings, presentations, brainstorming. Advantages of D-MM were listed as the possibility of adding multimedia material, ease of correction processes and the visual richness, while its disadvantage was listed as experiencing technical problems. PB-MM contribute to psychomotor development of students as well as learning by performing/experiencing. The difficulty in processes such as deleting, editing, etc. and in adding videos and images constitute the restrictions of PB-MM technique.
This paper presents a systematic literature review of the coordinated use of Learning Analytics and Computational Ontologies to support educators in the process of academic performance evaluation of students. The aim is to provide a general overview for researchers about the current state of this relationship between Learning Analytics and Ontologies, and how they have been applied in a coordinated way. We selected 31 of a total of 1230 studies related to the research questions. The retrieved studies were analyzed from two perspectives: first, we analyzed the approaches where researchers used Learning Analytics and Ontologies in a coordinated way to describe some Taxonomy of Educational Objectives; In the second perspective, we seek to identify which models or methods have been used as an analytical tool for educational data. The results of this review suggest that: 1) few studies consider that student interactions in the Learning Management System can represent students’ learning experiences; 2) most studies use ontologies in the context of learning object assessment to enable learning sequencing; 3) we did not identify methods of evaluation of academic performance guided by Taxonomies of Educational Objectives; and 4) no studies were identified that report the coordinated use of Learning Analytics and Computational Ontologies, in the context of academic performance monitoring. Thus, we identify future directions of research such as the proposal of a new model of evaluation of academic performance.