Creativity has emerged as an important 21st-century competency. Although it is traditionally associated with arts and literature, it can also be developed as part of computing education. Therefore, this article -presents a systematic mapping of approaches for assessing creativity based on the analysis of computer programs created by the students. As result, only ten approaches reported in eleven articles have been encountered. These reveal the absence of a commonly accepted definition of product creativity customized to computer education, confirming only originality as one of the well-established characteristics. Several approaches seem to lack clearly defined criteria for effective, efficient and useful creativity assessment. Diverse techniques are used including rubrics, mathematical models and machine learning, supporting manual and automated approaches. Few performed a comprehensive evaluation of the proposed approach regarding their reliability and validity. These results can help instructors to choose and adopt assessment approaches and guide researchers by pointing out shortcomings.
This paper investigates unplugged computing as a formal pedagogical strategy to teaching computing to a Maltese secondary class of Year 9 students. It aims at identifying the effectiveness of this pedagogy outlining the strengths and weaknesses in its application, taking into consideration the level of attainment for students, as well as the impact on teachers’ lesson preparation. This research study is based on the delivery of five unplugged activities. It analyses students’ reaction when exposed to such unplugged activities to assess the viability of using this pedagogy when teaching computing concepts in a formal setting. The study concludes that unplugged computing is an effective pedagogical strategy that helps attain a high level of engagement and student involvement, encouraging teamwork and collaboration. Students experience a wide attention span and good retention through the constant link of computing scenarios to real-life examples and the use of tangible non-computing related objects. Notwithstanding, the study also identifies certain limitations of this pedagogy, mainly that it is not sufficient as a standalone pedagogy, but needs to be applied in conjunction with other pedagogies to be able to cover all the expected learning objectives of the curriculum.
Source code plagiarism is an emerging issue in computer science education. As a result, a number of techniques have been proposed to handle this issue. However, comparing these techniques may be challenging, since they are evaluated with their own private dataset(s). This paper contributes in providing a public dataset for comparing these techniques. Specifically, the dataset is designed for evaluation with an Information Retrieval (IR) perspective. The dataset consists of 467 source code files, covering seven introductory programming assessment tasks. Unique to this dataset, both intention to plagiarise and advanced plagiarism attacks are considered in its construction. The dataset's characteristics were observed by comparing three IR-based detection techniques, and it is clear that most IR-based techniques are less effective than a baseline technique which relies on Running-Karp-Rabin Greedy-String-Tiling, even though some of them are far more time-efficient.
The objective of this article is to present the development and evaluation of dETECT (Evaluating TEaching CompuTing), a model for the evaluation of the quality of instructional units for teaching computing in middle school based on the students' perception collected through a measurement instrument. The dETECT model was systematically developed and evaluated based on data collected from 16 case studies in 13 different middle school institutions with responses from 477 students. Our results indicate that the dETECT model is acceptable in terms of reliability (Cronbach's alpha ?=.787) and construct validity, demonstrating an acceptable degree of correlation found between almost all items of the dETECT measurement instrument. These results allow researchers and instructors to rely on the dETECT model in order to evaluate instructional units and, thus, contribute to their improvement and to direct an effective and efficient adoption of teaching computing in middle school.
Programming is one of the basic subjects in most informatics, computer science mathematics and technical faculties' curricula. Integrated overview of the models for teaching programming, problems in teaching and suggested solutions were presented in this paper. Research covered current state of 1019 programming subjects in 715 study programmes at total of 218 faculties and 143 universities in 35 European countries that were analyzed. It was concluded that while most of the programmes highly support object-oriented paradigm of programming, introductory programming subjects are mainly based on imperative paradigm.