In today’s society, creativity plays a key role, emphasizing the importance of its development in K-12 education. Computing education may be an alternative for students to extend their creativity by solving problems and creating computational artifacts. Yet, there is little systematic evidence available to support this claim, also due to the lack of assessment models. This article presents SCORE, a model for the assessment of creativity in the context of computing education in K-12. Based on a mapping study, the model and a self-assessment questionnaire are systematically developed. The evaluation, based on 76 responses from K-12 students, indicates a high internal reliability (Cronbach’s alpha = 0.961) and confirmed the validity of the instrument suggesting only the exclusion of 3 items that do not seem to be measuring the concept. As such, the model represents a first step aiming at the systematic improvement of teaching creativity as part of computing education.
Programming is one of the most important aspects of a Computing course. Teaching programming is a challenging task due to a number of factors, ranging from lack of student problem solving skills to different teaching methods. This paper focuses on Maltese Computing teachers’ perspectives about the difficulties encountered when teaching programming to secondary school students in order to determine whether introducing programming to secondary school students through creating mobile-based games is an effective method to teach programming constructs. A resource pack consisting of various activities using MIT App Inventor 2 was created which incorporated constructivist approaches to teaching. This resource pack was reviewed by the teachers and their feedback was collected by means of a case study. The teachers agreed that developing mobile-based games would be highly stimulating to their students but there were uncertainties how this would affect students with different learning abilities and due to a general lack of computational thinking and problem-solving skills by most students.
The development of computational thinking is a major topic in K-12 education. Many of these experiences focus on teaching programming using block-based languages. As part of these activities, it is important for students to receive feedback on their assignments. Yet, in practice it may be difficult to provide personalized, objective and consistent feedback. In this context, automatic assessment and grading has become important. While there exist diverse graders for text-based languages, support for block-based programming languages is still scarce. This article presents CodeMaster, a free web application that in a problem-based learning context allows to automatically assess and grade projects programmed with App Inventor and Snap!. It uses a rubric measuring computational thinking based on a static code analysis. Students can use the tool to get feedback to encourage them to improve their programming competencies. It can also be used by teachers for assessing whole classes easing their workload.
Programming is one of the basic subjects in most informatics, computer science mathematics and technical faculties' curricula. Integrated overview of the models for teaching programming, problems in teaching and suggested solutions were presented in this paper. Research covered current state of 1019 programming subjects in 715 study programmes at total of 218 faculties and 143 universities in 35 European countries that were analyzed. It was concluded that while most of the programmes highly support object-oriented paradigm of programming, introductory programming subjects are mainly based on imperative paradigm.
In this article we report about a study to assess Dutch teachers' Pedagogical Content Knowledge (\small PCK), with special focus on programming as a topic in secondary school Informatics education. For this research, we developed an online research instrument: the Online Teacher \small PCK Analyser (OTPA). The results show that Dutch teachers' \small PCK scores between low and medium. Also we enquired whether there is any relation between teachers' \small PCK and the textbooks they use by comparing the results of this study with those of a previous one in which the \small PCK of textbooks was assessed. The results show that there is no strong relation. Finally, we looked for trends between teachers' \small PCK and their educational backgrounds, as most of the Dutch teachers have a different background than Informatics. The results show that also in this case there is no strong relation.