This research discusses the use of a gamified web platform for studying software modeling with Unified Modeling Language (UML). Although UML is constantly being improved and studied, many works show that there is difficulty in teaching and learning the subject, due to the complexity of its concepts and the students' cognitive difficulties with abstraction. There are challenges for instructors to find different pedagogical strategies to teach modeling. The platform proposed allowed students to complement their UML knowledge in an environment with game elements. From the results, it can be concluded that the platform obtained great acceptance and satisfaction of use. Most of the students participating in the research were satisfied with the usability of the platform, reporting a feeling of contribution of the tool to studying the content, in addition to pointing out the satisfaction of using gamification as a pedagogical strategy.
Scrum is a widely-used framework in industry, so many schools apply it to their software engineering courses, particularly capstone courses. Due to the differences between students and industrial professionals, changing Scrum is necessary to fit capstone projects. In this paper, we suggest a decision-making process to assist instructors in developing a strategy to adapt Scrum for their course. This framework considers critical differences, such as student’s workloads and course schedules, and keeps the Agile principles and Scrum events. To evaluate the adapted Scrum, we investigated student’s learning experiences, satisfaction, and performance by quantitatively analyzing user story points and source codes and qualitatively studying instructor’s evaluations, student’s feedback, and Sprint Retrospective notes. Our two case studies about adapted Scrum showed that having daily stand-up meetings in every class was not helpful, student’s satisfaction positively correlated to the difficulty of the task they tackled, and the project provided good learning experiences.
This work presents a systematic review whose objective was to identify heuristics applicable to the evaluation of the usability of educational games. Heuristics are usability engineering methods that aim to detect problems in the use of a system during its development and / or when its interface is in interaction with the user. Therefore, applying heuristics is an essential part of developing digital educational games. Search sources were articles available in all the databases present in the Capes / MEC / Brazil periodicals portal, in the available languages. The descriptors adopted were "educational games", "heuristic" and "usability" in Boolean search in titles, abstracts and keywords, with AND operator, for publications starting in 2014. The inclusion criteria were: (a) articles with a clear description of the methodology used in the usability analysis; (b) studies presenting primary data and (c) articles whose focus corresponds to the investigated question. Two examiners conducted the searches in the databases and a third the evaluation and general review of the data. Initially, 93 articles were identified, of which 19 were repeated, 5 were literature reviews. Of the 69 that remained, 57 were elected as not eligible with only 12 selected for full studies, of which 6 entered the final review. With this review we can deduce that the field of heuristics and usability for educational games is still little explored, with few specific evaluations validated or in the process of validation, requiring greater investment in the area. Through this review, we found at least one heuristic that meets the usability evaluation of educational software: Game User Experience Satisfaction Scale (GUESS).
Diverse initiatives have emerged to popularize the teaching of computing in K-12 mainly through programming. This, however, may not cover other important core computing competencies, such as Software Engineering (SE). Thus, in order to obtain an overview of the state of the art and practice of teaching SE competences in K-12, we carried out a systematic mapping study. We identified 17 instructional units mostly adopting the waterfall model or agile methodologies focusing on the main phases of the software process. However, there seems to be a lack of details hindering large-scope adoption of these instructional units. Many articles also do not report how the units have been developed and/or evaluated. However, results demonstrating both the viability and the positive contribution of initiating SE education already in K-12, indicate a need for further research in order to improve computing education in schools contributing to the popularization of SE competencies.
Generally, universities have complex and large websites, which include a collection of many sub-sites related to the different parts of universities (e.g. registration unit, faculties, departments). Managers of academic institutions and educational websites need to know types of usability problems that could be found on their websites. This would shed the light on possible weak aspects on their websites, which need to be improved, in order to reap the advantages of usable educational websites. There is a lack of research which provides detailed information regarding the types of specific usability problems that could be found on universities websites in general, and specifically in Jordan. This research employed the heuristic evaluation method to comprehensively evaluate the usability of three large public university websites in Jordan (Hashemite University, the University of Jordan, and Yarmouk University). The evaluation involves testing all pages related to the selected universities faculties and their corresponding departments. A list of 34 specific types of usability problems, which could be found on a Jordanian university website, was identified. The results provide a description regarding the common types of the problems found on the three Jordanian university sites, together with their numbers and locations on the website.