The Effects of Digital Concept Cartoons and Digital Concept Maps on Eliminating Middle School Students’ Misconceptions in the Mathematics Course: An Experimental Research
There can be many reasons why students fail to answer correctly to summative tests in advanced computer science courses: often the cause is a lack of prerequisites or misconceptions about topics presented in previous courses. One of the ITiCSE 2020 working groups investigated the possibility of designing assessments suitable for differentiating between fragilities in prerequisites (in particular, knowledge and skills related to introductory programming courses) and advanced topics. This paper reports on an empirical evaluation of an instrument focusing on data structures, among those proposed by the ITiCSE working group. The evaluation aimed at understanding what fragile knowledge and skills the instrument is actually able to detect and to what extent it is able to differentiate them. Our results support that the instrument is able to distinguish between some specific fragilities (e.g., value vs. reference semantics), but not all of those claimed in the original report. In addition, our findings highlight the role of relevant skills at a level between prerequisite and advanced skills, such as program comprehension and reasoning about constraints. We also suggest ways to improve the questions in the instrument, both by improving the distractors of the multiple choice questions, and by slightly changing the content or phrasing of the questions. We argue that these improvements will increase the effectiveness of the instrument in assessing prerequisites as a whole, but also to pinpoint specific fragilities.
This paper presents an educational setting that attempts to enhance students’ understanding and facilitate students’ linking-inferencing skills. The proposed setting is structured in three stages. The first stage intends to explore students’ prior knowledge. The second stage aims to help students tackle their difficulties and misconceptions and deepen their understanding of the topics under study. This is attempted through individual student engagement in suitably-designed activities and relative feedback. As recorded in previous research, students’ difficulties feedback on the material development. The third stage of the educational setting exploits social interaction to help students reorganize their knowledge of the concepts under study. The web-based application of the proposed educational setting indicated improvement in first-year Computer Science (CS) students’ understanding of fundamental Computer Architecture concepts and progress in students’ linking-inference skills. These results encourage integration in the instructional process of interventions designed according to the proposed setting in order to support and enhance students’ understanding of troublesome concepts and their interrelations.