Nowadays, solving problems is substantial for the social relationship human. Computational Thinking (CT) emerges as an interdisciplinary thought process encompassing mental abilities to help students solve and understand problems. Researchers invest in the methodological proposal of activities aimed at CT stimulation, educational approaches, and the conception of technologies that support these activities’ execution. Educational Robotics (ER) is one of these technologies that stand out at different educational levels to favor teamwork, logical thinking, and creativity, skills intimately articulated with the computing paradigm. The main objective of this work is to investigate the impact of ER activities on CT development and subjects learning in the Technical and Vocational Education in High School. For this, we accomplished a study of intervention research type with students and teachers analyzing quantitative and qualitative aspects. The results indicate that the introduction of ER can favor students in the development of CT skills and learning High School subjects.
This paper describes a study of students' meaningful learning of the engineering design process during their participation in robotics activities. The population consisted of middle-school students (ages 13-15 years) who participated in the FIRST® LEGO® League competition. The methodology used was qualitative, including observations and interviews. The analysis was based on the Revised Bloom Taxonomy. Almost all the groups demonstrated meaningful learning, although some reached higher levels than others. Most of the groups demonstrated the understanding/applying level during each of the design process phases (searching and decision making, construction and testing, diagnosing and debugging), some demonstrated the analyzing/evaluating level, but only a few demonstrated the higher level of creating. Factors that seemed to play a role in the students' learning include: (a) the teaching or mentoring style; (b) the absence of a robotics textbook; (c) the extra-curricular competition-oriented nature of the activities; and (d) the unstable nature of the design of the robot.
The aim of this study was to reveal pre-service teachers' experiences in learning robotics design and programming. Data were collected from 15 pre-service teachers through semi-structured interviews and analyzed using the content analysis method. Three themes were identified in this study: Course process, professional development and teaching children. The pre-service teachers indicated that they found opportunities to learn by doing and experience, enjoyed doing robotics activities and felt in flow in this process. They also expressed that the robotics programming course positively influenced their attitudes towards programming and improved their programming skills. They emphasized the importance of keeping their intrinsic motivation high by maintaining their individual efforts to solve problems. Moreover, they made various suggestions for teaching robotics to children. Implications are discussed in terms of practices for educational robotics in teacher training, and further research directions.
The increasing number of children who need special education in Finland also requires an increasing amount of resources from teachers and a restructuring of the education system. Technology can be a part of the solution to this resource problem; however, for the technological solution to work, technologies need to be designed and implemented in new ways. Technologies used in special education in Finland can roughly be divided into four main categories; assistive technologies, communication technologies, and learning software. Last and the newest category concretizing technologies, such as educational robotics, have successfully been used in the Technologies for Children with Individual Needs Project. Possibilities provided by educational robotics have been extensive, not only because of the technology itself, but also because of how the technology has been implemented in innovative projects with school students. From this point of view, students with individual educational needs as well as those involved in inclusive education and harmonized school days could benefit from the use of technology.
This paper deals with the process of expanding the virtual secondary education school network, aiming to provide daily basis, online teaching. The context of this research is the ESR funded Eastern Finland Educational Network Project, which is a network of 36 high schools providing courses via web-based learning environments. The project is a shared activity between teachers and researchers. The aim of the present study is to investigate teachers' technological pedagogical content knowledge by finding out what kind of pedagogical solutions the teachers use while designing and carrying out online teaching. In this study thirteen online courses were analysed and based on the analysis, four different course design patterns were found. The most general approach in course designs seems to be teacher centred, focusing on well guided individual learning processes. There seems to be need for development of teacher technological pedagogical content knowledge, to support approaches of more collaborative course designs.