Controlling complexity through the use of abstractions is a critical part of problem solving in programming. Thus, becoming proficient with procedural and data abstraction through the use of user-defined functions is important. Properly using functions for abstraction involves a number of other core concepts, such as parameter passing, scope and references, which are known to be difficult. Therefore, this paper aims to study students’ proficiency with these core concepts, and students’ ability to apply procedural and data abstraction to solve problems. We collected data from two years of an introductory Python course, both from a questionnaire and from two lab assignments. The data shows that students had difficulties with the core concepts, and a number of issues solving problems with abstraction. We also investigate the impact of using a visualization tool when teaching the core concepts.
The notion of algorithm may be perceived in different levels of abstraction. In the lower levels it is an operational set of instructions. In higher levels it may be viewed as an object with properties, solving a problem with characteristics. Novices mostly relate to the lower levels. Yet, higher levels are very relevant for them as well. We unfold the importance of higher level abstractions for novices, by demonstrating the role of declarative observations of algorithmic problems, and the benefit of developing awareness of such observations in algorithmic problem solving. This is shown in a two-stage study, which first reveals the unfortunate lack of declarative observations, and then displays comparative results of experimental and control groups, which stems from different awareness and competence with declarative observations.
Teaching software engineering (SWE) as a core computer science course (ACM, 2013) is a challenging task. The challenge lies in the emphasis on what a large-scale software means, implementing teamwork, and teaching abstraction in software design while simultaneously engaging students into reasonable coding tasks. The abstraction of the system design is perhaps the most critical and theoretical part of the course and requires early engagement of the students with the necessary topics followed by implementation of the abstract model consistently. Normally, students would take such courses in the undergraduate curriculum sequence after data structures and/or object-oriented design/programming. Therefore, they would be able to learn about systematic modeling of software as a system. In this work, we address how to facilitate the teaching of SWE by introducing abstract modeling. Furthermore, functional decomposition is reviewed as a critical component which in turn, requires understanding of how different tasks are accomplished by enterprise software. Combining such pieces with concepts of architecture and design patterns of software provides foundational knowledge for students to be able to navigate around enterprise software in the real world.
Open Educational Resources have emerged as important elements of education in the contemporary society, promoting life-long and personalized learning that transcends social, economic and geographical barriers. To achieve the potential of OERs and bring impact on education, it is necessary to increase their development and supply. However, one of the current challenges is how to produce quality and relevant OERs to be reused and adapted to different contexts and learning situations. In this paper we proposed an agile method for the development of OERs - AM-OER, grounded on agile practices from Software Engineering. Learning Design practices from the OULDI project (UK Open University) are also embedded into the AM-OER aiming at improving quality and facilitating reuse and adaptation of OERs. In order to validate AM-OER, an experiment was conducted by applying it in the development of an OER on software testing. The results showed preliminary evidences on the applicability, effectiveness and efficiency of the method in the development of OERs.
Abstract thinking is a vital skill when learning computer science. Object technology and the concepts it is based upon make this skill even more crucial. However, previous research works show that students in top universities as well as experienced practitioners in industry encounter difficulties in thinking in abstract terms while practicing object oriented development. In this paper we suggest an iterative teaching methodology for supporting students in learning object oriented concepts. The suggested methodology is based on familiarizing students with modeling languages and tools at the early stages of their learning and iterating between model and code. We theoretically examine the contribution of modeling languages, in particular UML, to abstract thinking and consequently to the understanding of object oriented concepts and present some observations acquired during a trial execution of this methodology in a university course.