The article describes a study carried out on pupils aged 12-13 with no prior programming experience. The study examined how they learn to use loops with a fixed number of repetitions. Pupils were given a set of programming tasks to solve, without any preparatory or accompanying instruction or explanation, in a block-based visual programming environment. Pupils’ programs were analyzed to identify possible misconceptions and factors influencing them. Four misconceptions involving comprehension of the loop concept and repeat command were detected. Some of these misconceptions were found to have an impact on a pupil’s need to ask the computer to check the correctness of his/her program. Some of the changes made to tasks had an impact on the frequency of these misconceptions and could be the factors influencing them. Teachers and course book writers will be able to use the results of our research to create an appropriate curriculum. This will enable pupils to acquire and subsequently deal with misconceptions that could prevent the correct understanding of created concepts.
Nowadays, few professionals understand the techniques and testing criteria to systematize the software testing activity in the software industry. Towards shedding some light on such problems and promoting software testing, professors in the area have established Massive Open Online Courses as educational initiatives. However, the main limitation is the professor’s lack of supervision of students. A conversation agent called TOB-STT has been defined in trying to avoid the problem. A previous study introduced TOB-STT; however, it did not analyze its efficacy. This article addresses a controlled experiment that analyzed its efficacy and revealed it was not expressive in its current version. Therefore, we conducted an in-depth analysis to find what caused this result and provided a detailed discussion. The findings contribute to the TOB-STT since the experimental results show that improvements need to be made in the conversational agent before we use it in Massive Open Online Courses.
In this study, effectiveness of a computer science course at the secondary school level is investigated through a holistic approach addressing the dimensions of instructional content design, development, implementation and evaluation framed according to ADDIE instructional design model where evaluation part constituted the research process for the current study. The process has initiated when the computer science curriculum had major revisions in order to provide in-service teachers with necessary support and guidance. The study is carried through as a project, which lasted more than one year and both quantitative and qualitative measures were used through a sequential explanatory method approach. The intention was to investigate the whole process in detail in order to reveal the effectiveness of the process and the products. In this regard, not only teachers' perceptions but also students' developments in their perceptions of academic achievement and computational thinking, as well as correlations between the computational thinking sub-factors were investigated. The findings showed that the instructional materials and activities developed within the scope of the study, positively affected the computational thinking and academic achievement of students aged 10 and 12 years old. The teachers' weekly feedbacks regarding application structures and implementation processes were also supported the findings and revealed some more details that will be useful both for instructional designers and teachers.
Although there is no universal agreement that students should learn programming, many countries have reached a consensus on the need to expose K-12 students to Computational Thinking (CT). When, what and how to teach CT in schools are open questions and we attempt to address them by examining how well students around the world solved problems in recent Bebras challenges. We collected and analyzed performance data on Bebras tasks from 115,400 students in grades 3-12 in seven countries. Our study provides further insight into a range of questions addressed in smaller-scale inquiries, in particular about the possible impact of schools systems and gender on students' success rate.
In addition to analyzing performance data of a large population, we have classified the considered tasks in terms of CT categories, which should account for the learning implications of the challenge. Algorithms and data representation dominate the challenge, accounting for 75-90% of the tasks, while other categories such as abstraction, parallelization and problem decomposition are sometimes represented by one or two questions at various age groups. This classification can be a starting point for using online Bebras tasks to support the effective learning of CT concepts in the classroom.
Mathematical logic is a discipline used in sciences and humanities with different point of view. Although in tertiary level computer science education it has a solid place, it does not hold also for secondary level education. We present a heterogeneous study both theoretical based and empirically based which points out the key role of logic in computer science, computer science education and knowledge representation. We focus on the key contrast of semantics and syntax, the resolution principle as a leading inference technique (giving also interesting non-clausal generalization of the rule). Further we discuss the possibilities of inclusion the non-classical (many-valued) logics in education together with the original generalization of the non-clausal resolution rule into fuzzy logic. The last part describes partial results of the research concerning the secondary education in the Czech Republic especially in the mathematical logic field. The generalization of the presented ideas entails the article.