Educational data mining is widely deployed to extract valuable information and patterns from academic data. This research explores new features that can help predict the future performance of undergraduate students and identify at-risk students early on. It answers some crucial and intuitive questions that are not addressed by previous studies. Most of the existing research is conducted on data from 2-3 years in an absolute grading scheme. We examined the effects of historical academic data of 15 years on predictive modeling. Additionally, we explore the performance of undergraduate students in a relative grading scheme and examine the effects of grades in core courses and initial semesters on future performances. As a pilot study, we analyzed the academic performance of Computer Science university students. Many exciting discoveries were made; the duration and size of the historical data play a significant role in predicting future performance, mainly due to changes in curriculum, faculty, society, and evolving trends. Furthermore, predicting grades in advanced courses based on initial pre-requisite courses is challenging in a relative grading scheme, as students’ performance depends not only on their efforts but also on their peers. In short, educational data mining can come to the rescue by uncovering valuable insights from academic data to predict future performance and identify the critical areas that need significant improvement.
In today's world, the ability to think computationally is essential. The skillset expected of a computer scientist is no longer solely based on the old stereotype but also a crucial skill for adapting to the future. This perspective presents a new educational challenge for society. Everyone must have a positive attitude toward understanding and using these skills daily. One thousand two hundred seven documents about computational thinking (CT) may be found while searching the Scopus database from 1987 to 2023. Data from Scopus were analyzed using VOSviewer software. This study educates academics by delving into the fundamentals of what is known about the CT of visual and quantitative research skills. This approach allows for a more in-depth look at the literature and a better understanding of the research gap in CT. This bibliometrics analysis demonstrates that (1) research on CT is common to all sciences and will develop in the future; (2) the majority of articles on CT are published in journals in the fields of education, engineering, science and technology, computing and the social sciences; (3) the United States is the most dominant country in CT publications with a variety of collaborations; (4) keywords that often appear are CT, engineering, education, and mathematics, and (5) research on CT has developed significantly since 2013. Our investigation reveals the beginnings and progression of the academic field of research into CT. Furthermore, it offers a road map indicating how this study area will expand in the coming years.
Distance Learning has enabled educational practices based on digital platforms, generating massive amounts of data. Several initiatives use this data to identify dropout contexts, mainly providing teacher support about student behavior. Approaches such as Active Methodologies are known as having good potential to involve and motivate students. This article presents a systematic mapping aiming to identify current Educational Data Mining and Learning Analytics methods. Besides, we identify Active Methodologies’ application to mitigate dropout in Distance Learning. We evaluated 668 papers published from January 2015 to March 2020. The results indicate a growing application of Educational Data Mining and Learning Analytics to identify and mitigate students’ abandonment in Distance Learning. However, studies with Active Methodologies to minimize dropout and enhance student permanence are scarce. Some works suggest Active Methods as a possible complement of Learning Analytics in dropout.
Advances in information and communication technologies have contributed to the increasing use of virtual learning environments as support tools in teaching and learning processes. Virtual platforms generate a large volume of educational data, and the analysis of this data allows useful information discoveries to improve learning and assist institutions in reducing disqualifications and dropouts in distance education courses. This article presents the results of a systematic mapping study aiming to identify how educational data mining, learning analytics, and collaborative groups have been applied in distance education environments. Articles were searched from 2010 to June 2020, initially resulting in 55,832 works. The selection of 51 articles for complete reading in order to answer the research questions considered a group of inclusion and exclusion criteria. Main results indicated that 53% of articles (27/51) offered intelligent services in the field of distance education, 47% (24/51) applied methods and analysis techniques in distance education environments, 21% (11/51) applied methods and analysis techniques focused on virtual learning environments logs, and 5% (3/51) presented intelligent collaborative services for identification and creation of groups. This article also identified research interest clusters with highlights for the terms recommendation systems, data analysis, e-learning, educational data mining, e-learning platform and learning management system.
This paper presents a systematic literature review of the coordinated use of Learning Analytics and Computational Ontologies to support educators in the process of academic performance evaluation of students. The aim is to provide a general overview for researchers about the current state of this relationship between Learning Analytics and Ontologies, and how they have been applied in a coordinated way. We selected 31 of a total of 1230 studies related to the research questions. The retrieved studies were analyzed from two perspectives: first, we analyzed the approaches where researchers used Learning Analytics and Ontologies in a coordinated way to describe some Taxonomy of Educational Objectives; In the second perspective, we seek to identify which models or methods have been used as an analytical tool for educational data. The results of this review suggest that: 1) few studies consider that student interactions in the Learning Management System can represent students’ learning experiences; 2) most studies use ontologies in the context of learning object assessment to enable learning sequencing; 3) we did not identify methods of evaluation of academic performance guided by Taxonomies of Educational Objectives; and 4) no studies were identified that report the coordinated use of Learning Analytics and Computational Ontologies, in the context of academic performance monitoring. Thus, we identify future directions of research such as the proposal of a new model of evaluation of academic performance.