With the growing search for qualified professionals in the exact area, teaching in STEM (Science, Technology, Engineering, and Mathematics) areas is gaining importance. In parallel, it appears that drones are an increasingly present reality in the civil area; however, there are few scientific studies of their application in the pedagogical environment, and their insertion is still practically nil in the school environment. Thus, this work aims to analyze the feasibility of using a set of technologies based on drones, designed based on the theory of significant learning through the use of active methodologies. The study was carried out with 30 high school students and followed a line of quali-quantitative analysis, in which the quantitative data were collected from the results obtained in a pre and post-test and the qualitative ones through recordings during the interventions, observations of the researcher, and a semi-structured press interview. Finally, a triangulation between the methodologies was carried out, looking for congruent aspects between the different techniques used. As a result, it was found that the workshops with the platform based on drones helped in the understanding, construction, and interpretation of the content covered, and it can be concluded that there is a significant relationship between the use of the technological set proposed in the pedagogical process and the possibility of significant learning in the STEM areas by the students.
Education 4.0 (E4) aims to improve the teaching-learning process and democratize access to quality education by using Industry 4.0 technologies in educational environments. The main objective of this article is to propose a framework containing a package of policies and initiatives for the drivers of society (industry, government, and academia) to develop E4. The framework was elaborated through systematic review based on good practices, challenges, and opportunities of E4, which were systematized considering the technical-scientific literature and the authors' experience. The main scientific contribution of this work is the creation of a new block of knowledge about E4 that expands and at the same time deepens the existing literature and can support new research and foster initiatives on the subject. Its main applied contribution is to increase access to quality education through the development of E4.
The contents taught in the programming subjects have a great relevance in the formation of computing students. However, these subjects are characterized by high failure rates, as they require logical reasoning and mathematical knowledge. Thus, establishing knowledge through the subject of algorithms can help students to overcome these difficulties and absorb the contents and skills required. Thus, this work aims to present and discuss the results of a second experiment on the application of a teaching plan composed of several active methodologies (Virtual Learning Environments, Coding Dojo, Gamification, Problem-Based Learning, Flipped Classroom and Serious Games) in an algorithms subject. Based on this experiment, it was evaluated whether there were learning gains compared to the learning acquired with the traditional method. Finally, an analysis was performed using the two-tailed Student-t approach, used for independent samples, which presented statistically significant results.
Information and Communication Technologies (ICT) in education provide a new learning environment where the student builds his own knowledge, allowing his visualization and experimentation. This study evaluated the Geogebra software in the learning process of Calculus. It was observed that the proposed activities helped in the graphical interpretation of the covered content.