Teaching programming is a complex process requiring learning to develop different skills. To minimize the challenges faced in the classroom, instructors have been adopting active methodologies in teaching computer programming. This article presents a Systematic Mapping Study (SMS) to identify and categorize the types of methodologies that instructors have adopted for teaching programming. We evaluated 3,850 papers published from 2000 to 2022. The results provide an overview and comprehensive view of active learning methodologies employed in teaching programming, technologies, programming languages, and the metrics used to observe student learning in this context. In the results, we identified thirty-seven different ALMs adopted by instructors. We realized that seventeen publications describe teaching approaches that combine more than one ALM, and the most reported methodologies in the studies are Flipped Classroom and Gamification-Based Learning. In addition, we are proposing an educational and collaborative tool called CollabProg, which summarizes the primary active learning methodologies identified in this SMS. CollabProg will assist instructors in selecting appropriate ALMs that align with their pedagogical requirements and teaching programming context.
This study aims to explain the relationships between secondary school students' digital literacy, computer programming self-efficacy and computational thinking self-efficacy. The study group consists of 204 secondary school students. A relational survey model was used in the research method and three different data collection tools were used to collect data. The structural equation model was used in data analysis to reveal a model that explains and predicts the relationships between variables. According to the results of the research, it was determined that digital literacy of secondary school students affected their computer programming self-efficacy, digital literacy affected their computational thinking self-efficacy, and computer programming self-efficacy affected their computational thinking self-efficacy. It was also found that digital literacy skills have an indirect effect on secondary students' computational thinking self-efficacy on computational thinking self-efficacy.
Developing an engaging and positive learning environment for learners, especially in a particular course, is one of the most creative aspects of teaching. Learning design supports the design of interventions, which are pedagogically informed, promote student-centered learning activities and make effective use of appropriate resources and technologies. In the context of this work, a framework is proposed for teaching learning design issues in tertiary education which interweaves teacher-centered activities with student-centered activities. The students are engaged in lab activities and in a learning design peer assessment project. Sustainable feedback practices are considered an integral part of the whole process. Findings drawn from an empirical study carried out during two consecutive academic years reveal that the interweaving of instruction and assessment may contribute to the understanding of the main learning design issues and to the cultivation of skills both in the development of educational applications as well as in the design of technology enhanced learning activities.
Automatic program evaluation is a way to assess source program files. These techniques are used in learning management environments, programming exams and contest systems. However, use of automated program evaluation encounters problems: some evaluations are not clear for the students and the system messages do not show reasons for lost points. The author proposes several ideas for possible improvements in black box testing, which can lead into better service for the users of automatic evaluation systems.
This paper presents results from three interrelated studies focusing on introducing TRAKLA2 to students taking courses on data structures and algorithms at the University of Turku and \rAbo Akademi University in 2004. Using TRAKLA2 they got acquainted with a completely new system for solving exercises that provided them with automatic feedback and the possibility to resubmit their solutions. Besides comparing the students' learning results, a survey was made with 100 students on the changes in their attitudes towards web-based learning environments. In addition, a usability evaluation was conducted in a human-computer interaction laboratory.
Our results show that TRAKLA2 considerably increased the positive attitudes towards web-based learning. According to students' self-evaluations, the best learning results are achieved by combining traditional exercises with web-based ones. In addition, the numerical course statistics were clearly better than in 2003 when only pen-and-paper exercises in class were used. The results from the usability test were also very positive: no severe usability problems were revealed; in fact, the results indicate that the system is very easy to learn and user-friendly as a whole.