Critical thinking is a fundamental skill for 21st-century citizens, and it should be promoted from elementary school and developed in computing education. However, assessing the development of critical thinking in educational contexts presents unique challenges. In this study, a systematic mapping was carried out to investigate how to assess the development of critical thinking, or some of its skills, in K-12 computing teaching. The results indicate that primary studies on the development of critical thinking in K-12 computing education are concentrated in Asian countries, mainly focusing on teaching concepts such as algorithms and programming. Moreover, the studies do not present a fixed set of critical thinking skills assessed, and the skills are selected according to specific teaching and research needs. Most of the studies adopted student self-assessment using instruments that are well-known in the literature for assessing critical thinking. Many studies measured the quality of instruments for their research, obtaining favorable results and demonstrating consistency. However, the research points to a need for more diversity in assessment methods beyond student self-assessment. The findings suggest a need for more comprehensive and diverse critical thinking assessments in K-12 computing education, covering different educational stages and computing education concepts. This research aims to guide educators and researchers in developing more effective critical thinking assessments for K-12 computing education.
In K-12 computing education, there is a need to identify and teach concepts that are relevant to understanding machine learning technologies. Studies of teaching approaches often evaluate whether students have learned the concepts. However, scant research has examined whether such concepts support understanding digital artefacts from everyday life and developing agency in a digital world. This paper presents a qualitative study that explores students’ perspectives on the relevance of learning concepts of data-driven technologies for navigating the digital world. The underlying approach of the study is data awareness, which aims to support students in understanding and reflecting on such technologies to develop agency in a data-driven world. This approach teaches students an explanatory model encompassing several concepts of the role of data in data-driven technologies. We developed an intervention and conducted retrospective interviews with students. Findings from the analysis of the interviews indicate that students can analyse and understand data-driven technologies from their everyday lives according to the central role of data. In addition, students’ answers revealed four areas of how learning about data-driven technologies becomes relevant to them. The paper concludes with a preliminary model suggesting how computing education can make concepts of data-driven technologies meaningful for students to understand and navigate the digital world.
Although Machine Learning (ML) is used already in our daily lives, few are familiar with the technology. This poses new challenges for students to understand ML, its potential, and limitations as well as to empower them to become creators of intelligent solutions. To effectively guide the learning of ML, this article proposes a scoring rubric for the performance-based assessment of the learning of concepts and practices regarding image classification with artificial neural networks in K-12. The assessment is based on the examination of student-created artifacts as a part of open-ended applications on the use stage of the Use-Modify-Create cycle. An initial evaluation of the scoring rubric through an expert panel demonstrates its internal consistency as well as its correctness and relevance. Providing a first step for the assessment of concepts on image recognition, the results may support the progress of learning ML by providing feedback to students and teachers.
In today’s society, creativity plays a key role, emphasizing the importance of its development in K-12 education. Computing education may be an alternative for students to extend their creativity by solving problems and creating computational artifacts. Yet, there is little systematic evidence available to support this claim, also due to the lack of assessment models. This article presents SCORE, a model for the assessment of creativity in the context of computing education in K-12. Based on a mapping study, the model and a self-assessment questionnaire are systematically developed. The evaluation, based on 76 responses from K-12 students, indicates a high internal reliability (Cronbach’s alpha = 0.961) and confirmed the validity of the instrument suggesting only the exclusion of 3 items that do not seem to be measuring the concept. As such, the model represents a first step aiming at the systematic improvement of teaching creativity as part of computing education.
Although Machine Learning (ML) is integrated today into various aspects of our lives, few understand the technology behind it. This presents new challenges to extend computing education early to ML concepts helping students to understand its potential and limits. Thus, in order to obtain an overview of the state of the art on teaching Machine Learning concepts in elementary to high school, we carried out a systematic mapping study. We identified 30 instructional units mostly focusing on ML basics and neural networks. Considering the complexity of ML concepts, several instructional units cover only the most accessible processes, such as data management or present model learning and testing on an abstract level black-boxing some of the underlying ML processes. Results demonstrate that teaching ML in school can increase understanding and interest in this knowledge area as well as contextualize ML concepts through their societal impact.