This autoethnographic paper is part of a special issue trying to answer the question “How to design or choose languages for programming novices?” I will describe howmy programming language Hedy was created, how the initial design goals were formed, how my perspectives on learning and teaching changed along the way, and how Hedy changed with it. The paper also discusses how the Hedy community came to be. Hedy was initially made for my own classroom and teaching, but quickly attracted a community, which I learned a lot from. This special issue has given me a unique opportunity, after 5 years of working on Hedy, to reflect on the process and to learn from it myself, and will hopefully also allow other programming language designers to learn from.
Knowledge about Machine Learning is becoming essential, yet it remains a restricted privilege that may not be available to students from a low socio-economic status background. Thus, in order to provide equal opportunities, we taught ML concepts and applications to 158 middle and high school students from a low socio-economic background in Brazil. Results show that these students can understand how ML works and execute the main steps of a human-centered process for developing an image classification model. No substantial differences regarding class periods, educational stage, and sex assigned at birth were observed. The course was perceived as fun and motivating, especially to girls. Despite the limitations in this context, the results show that they can be overcome. Mitigating solutions involve partnerships between social institutions and university, an adapted pedagogical approach as well as increased on-by-one assistance. These findings can be used to guide course designs for teaching ML in the context of underprivileged students from a low socio-economic status background and thus contribute to the inclusion of these students.
Although Machine Learning (ML) is used already in our daily lives, few are familiar with the technology. This poses new challenges for students to understand ML, its potential, and limitations as well as to empower them to become creators of intelligent solutions. To effectively guide the learning of ML, this article proposes a scoring rubric for the performance-based assessment of the learning of concepts and practices regarding image classification with artificial neural networks in K-12. The assessment is based on the examination of student-created artifacts as a part of open-ended applications on the use stage of the Use-Modify-Create cycle. An initial evaluation of the scoring rubric through an expert panel demonstrates its internal consistency as well as its correctness and relevance. Providing a first step for the assessment of concepts on image recognition, the results may support the progress of learning ML by providing feedback to students and teachers.
Prior programming knowledge of students has a major impact on introductory programming courses. Those with prior experience often seem to breeze through the course. Those without prior experience see others breeze through the course and disengage from the material or drop out. The purpose of this study is to demonstrate that novice student programming behavior can be modeled as a Markov process. The resulting transition matrix can then be used in machine learning algorithms to create clusters of similarly behaving students. We describe in detail the state machine used in the Markov process and how to compute the transition matrix. We compute the transition matrix for 665 students and cluster them using the k-means clustering algorithm. We choose the number of cluster to be three based on analysis of the dataset. We show that the created clusters have statistically different means for student prior knowledge in programming, when measured on a Likert scale of 1-5.
The European Commission Science Hub has been promoting Computational Thinking (CT) as an important 21st century skill or competence. However, "despite the high interest in developing computational thinking among schoolchildren and the large public and private investment in CT initiatives, there are a number of issues and challenges for the integration of CT in the school curricula". On the other hand, the Digital Competence (DC) Framework 2.0 (DigCom) is promoted in the same European Commission Science Hub portal. It shows that both topics have many things in common. Thus, there is the need of research on the relationship between CT and digital competence.
The goal of this paper is to analyse and discuss the relationship between DC and CT, and to help educators as well as educational policy makers to make informed decisions about how CT and DC can be included in their local institutions. We begin by defining DC and CT and then discuss the current state of both phenomena in education in multiple countries in Europe. By analysing official documents, we try to find the underlying commonness in both DC and CT, and discover all possible connections between them. Possible interconnections between the component groups of approaches are presented in Fig.