The insertion of Machine Learning (ML) in everyday life demonstrates the importance of popularizing an understanding of ML already in school. Accompanying this trend arises the need to assess the students’ learning. Yet, so far, few assessments have been proposed, most lacking an evaluation. Therefore, we evaluate the reliability and validity of an automated assessment of the students’ learning of an image classification model created as a learning outcome of the “ML for All!” course. Results based on data collected from 240 students indicate that the assessment can be considered reliable (coefficient Omega = 0.834/Cronbach's alpha α=0.83). We also identified moderate to strong convergent and discriminant validity based on the polychoric correlation matrix. Factor analyses indicate two underlying factors “Data Management and Model Training” and “Performance Interpretation”, completing each other. These results can guide the improvement of assessments, as well as the decision on the application of this model in order to support ML education as part of a comprehensive assessment.
Prior programming knowledge of students has a major impact on introductory programming courses. Those with prior experience often seem to breeze through the course. Those without prior experience see others breeze through the course and disengage from the material or drop out. The purpose of this study is to demonstrate that novice student programming behavior can be modeled as a Markov process. The resulting transition matrix can then be used in machine learning algorithms to create clusters of similarly behaving students. We describe in detail the state machine used in the Markov process and how to compute the transition matrix. We compute the transition matrix for 665 students and cluster them using the k-means clustering algorithm. We choose the number of cluster to be three based on analysis of the dataset. We show that the created clusters have statistically different means for student prior knowledge in programming, when measured on a Likert scale of 1-5.
In recent years, Artificial Intelligence (AI) has shown significant progress and its potential is growing. An application area of AI is Natural Language Processing (NLP). Voice assistants incorporate AI by using cloud computing and can communicate with the users in natural language. Voice assistants are easy to use and thus there are millions of devices that incorporates them in households nowadays. Most common devices with voice assistants are smart speakers and they have just started to be used in schools and universities. The purpose of this paper is to study how voice assistants and smart speakers are used in everyday life and whether there is potential in order for them to be used for educational purposes.
Although Machine Learning (ML) is integrated today into various aspects of our lives, few understand the technology behind it. This presents new challenges to extend computing education early to ML concepts helping students to understand its potential and limits. Thus, in order to obtain an overview of the state of the art on teaching Machine Learning concepts in elementary to high school, we carried out a systematic mapping study. We identified 30 instructional units mostly focusing on ML basics and neural networks. Considering the complexity of ML concepts, several instructional units cover only the most accessible processes, such as data management or present model learning and testing on an abstract level black-boxing some of the underlying ML processes. Results demonstrate that teaching ML in school can increase understanding and interest in this knowledge area as well as contextualize ML concepts through their societal impact.
The growing amount of information in the world has increased the need for computerized classification of different objects. This situation is present in higher education as well where the possibility of effortless detection of similarity between different study courses would give the opportunity to organize student exchange programmes effectively and facilitate curriculum management and development. This area which currently relies on manual time-consuming expert activities could benefit from application of smartly adapted machine learning technologies. Data in this problem domain is complex leading to inability for automatic classification approaches to always reach the desired result in terms of classification accuracy. Therefore, our approach suggests an automated/semi-automated classification solution, which incorporates both machine learning facilities and interactive involvement of a domain expert for improving classification results. The system's prototype has been implemented and experiments are carried out. This interactive classification system allows to classify educational data, which often comes in unstructured or semi-structured, incomplete and/or insufficient form, thus reducing the number of misclassified instances significantly in comparison with the automatic machine learning approach.