The Computational Thinking (CT) teaching approach allows students to practice problem-solving in a way that they can use the Computer Science mindset. In this sense, Collaborative Learning has a lot to contribute to educational activities involving the CT. This article presents the design and evaluation of a Collaborative Learning framework for the development of CT skills in students. To design the proposed strategy, several fundamental features of the Collaborative Learning concept of the literature have been studied and sketched. The strategy was applied to middle school students through a digital games programming workshop. Data were collected by three means: (1) collecting artifacts produced during activities; (2) recording of game programming sessions; and (3) applying a structured interview to students. The data analysis showed evidence that the strategy was able to mobilize Computational Thinking skills in addition to mobilizing collaborative skills in learners.
Computational thinking (CT) has been introduced in primary schools worldwide. However, rich classroom-based evidence and research on how to assess and support students’ CT through programming are particularly scarce. This empirical study investigates 4th grade students’ (N = 57) CT in a comparatively comprehensive and fine-grained manner by assessing their Scratch projects (N = 325) with a framework that was revised from previous studies to aim towards enhancing CT. The results demonstrate in detail the various coding patterns and code constructs the students programmed in assorted projects throughout a programming course and the extent to which they had conceptual encounters with CT. Notably, the projects indicated CT diversely, and the students altogether encountered dissimilar areas in CT. To target the acquisition of CT broadly, manifold programming activities are necessary to introduce in the classroom. Furthermore, we discuss the possibilities of applying the assessment framework employed herein to support CT education through Scratch in classrooms.
Despite a growing effort to implement computational thinking (CT) skills in primary schools, little research is reported about what CT skills to teach at what age. Therefore, the research questions that guide this study read: (1) How is age related to students' success in computational thinking tasks? (2) How are computational thinking tasks perceived by students? (3) How do students' experience learning with respect to computational thinking? 200 primary school students between the age of 6 and 12 participated in this study. These students got introduced to two CT subjects: abstraction and decomposition. We found that age seems to be related with these concepts, with an interaction effect for gender in the abstraction task. No differences found between young and older students in the constructs perceived difficulty, cognitive load, and flow indicate that young primary school students can engage in learning these CT skills.
Although there is no universal agreement that students should learn programming, many countries have reached a consensus on the need to expose K-12 students to Computational Thinking (CT). When, what and how to teach CT in schools are open questions and we attempt to address them by examining how well students around the world solved problems in recent Bebras challenges. We collected and analyzed performance data on Bebras tasks from 115,400 students in grades 3-12 in seven countries. Our study provides further insight into a range of questions addressed in smaller-scale inquiries, in particular about the possible impact of schools systems and gender on students' success rate.
In addition to analyzing performance data of a large population, we have classified the considered tasks in terms of CT categories, which should account for the learning implications of the challenge. Algorithms and data representation dominate the challenge, accounting for 75-90% of the tasks, while other categories such as abstraction, parallelization and problem decomposition are sometimes represented by one or two questions at various age groups. This classification can be a starting point for using online Bebras tasks to support the effective learning of CT concepts in the classroom.
As an international informatics contest, or challenge, Bebras has started the second decade of its existence. The contest attracts more and more countries every year, recently there have been over 40 participating countries. From a single contest-focused annual event Bebras developed to a multifunctional challenge and an activities-based educational community building model. This paper aims to introduce the Bebras model using ten years of observations in implementing the contest in different countries. The model is essentially based on democratic and inclusive education values. Systematic literature review of research papers concerning Bebras activities has made an integral background for this model. The model is represented both at international and national levels and consists of several components where the development of Bebras tasks has taken a very significant role. Reasoning on innovated learning informatics and strengthening computational thinking by utilising carefully selected informatics concepts is discussed as well.