In this study, we aimed to investigate the impact of cooperative learning on the computational thinking skills and academic performances of middle school students in the computational problem-solving approach. We used the pretest-posttest control group design of the quasi-experimental method. In the research, computational problem-solving activities regarding 6th graders' goals of the "heat and matter" unit, were applied individually by Group 1 and cooperative learning by Group 2. These activities required students to use computational thinking skills and code using the Python programming language. The study involved 34 students from the 6th grade of a private middle school located in the capital city of Turkey. The Computational Thinking Test (CTt) and an academic achievement test were used as pre-tests and post-tests to monitor students' computational thinking skills and academic performances. Additionally, computational problem-solving activities were scored to track the progress of students' computational thinking abilities. Non-parametric Mann Whitney U and Wilcoxon T-tests were utilized to analyze the progression of pupils' computational thinking abilities and academic success, and ANCOVA was used to analyze CTt scores. Qualitative data were collected through semi-structured interviews at the end of the process to determine students' views on the computational problem-solving process. Results revealed a significant increase in students' academic achievement and computational thinking skills in both groups. A comparison of post-test scores showed no significant difference between groups. It is anticipated that the research results will make meaningful contributions to the literature concerning the progress of computational thinking skills in secondary school students.
The paper outlines curriculum development activities that have been done in science education in the Slovak Republic as a result of an international collaboration within the frame of the Leonardo da Vinci II pilot project Computerised Laboratory in Science and Technology Teaching - ``ComLab-SciTech''. The created teaching and learning materials include integration of science curricula in two meanings: an integration of knowledge and methodology of physics, chemistry and biology, as well as an integration of various true and virtual computerised methods of experiments. The materials contain suggestions for student investigative activities, in which life science processes are studied with the use of laboratory models.
This paper presents various methods of computer aided experiments in science education and their integration in Web environment as HTML documents. The concept of the virtual laboratory suitable for science teaching at the secondary school level is described. Some essentials and advantages of this approach are presented in the paper. They are illustrated with a concrete example of the course Integrated Science through Experiments that has been developed as a product of the European funded project Computerised Laboratory in Science and Technology Teaching within the Leonardo da Vinci II programme. The paper outlines the structure of the course accessible to the user via a tabular system of links.