The insertion of Machine Learning (ML) in everyday life demonstrates the importance of popularizing an understanding of ML already in school. Accompanying this trend arises the need to assess the students’ learning. Yet, so far, few assessments have been proposed, most lacking an evaluation. Therefore, we evaluate the reliability and validity of an automated assessment of the students’ learning of an image classification model created as a learning outcome of the “ML for All!” course. Results based on data collected from 240 students indicate that the assessment can be considered reliable (coefficient Omega = 0.834/Cronbach's alpha α=0.83). We also identified moderate to strong convergent and discriminant validity based on the polychoric correlation matrix. Factor analyses indicate two underlying factors “Data Management and Model Training” and “Performance Interpretation”, completing each other. These results can guide the improvement of assessments, as well as the decision on the application of this model in order to support ML education as part of a comprehensive assessment.
The integration of artificial intelligence (AI) topics into K–12 school curricula is a relatively new but crucial challenge faced by education systems worldwide. Attempts to address this challenge are hindered by a serious lack of curriculum materials and tools to aid teachers in teaching AI. This article introduces the theoretical foundations and design principles for implementing co-design projects in AI education, empirically tested in 12 Finnish classrooms. The article describes a project where 4th- and 7th-graders (N = 213) explored the basics of AI by creating their own AI-driven applications. Additionally, a framework for distributed scaffolding is presented, aiming to foster children's agency, understanding, creativity, and ethical awareness in the age of AI.
In K-12 computing education, there is a need to identify and teach concepts that are relevant to understanding machine learning technologies. Studies of teaching approaches often evaluate whether students have learned the concepts. However, scant research has examined whether such concepts support understanding digital artefacts from everyday life and developing agency in a digital world. This paper presents a qualitative study that explores students’ perspectives on the relevance of learning concepts of data-driven technologies for navigating the digital world. The underlying approach of the study is data awareness, which aims to support students in understanding and reflecting on such technologies to develop agency in a data-driven world. This approach teaches students an explanatory model encompassing several concepts of the role of data in data-driven technologies. We developed an intervention and conducted retrospective interviews with students. Findings from the analysis of the interviews indicate that students can analyse and understand data-driven technologies from their everyday lives according to the central role of data. In addition, students’ answers revealed four areas of how learning about data-driven technologies becomes relevant to them. The paper concludes with a preliminary model suggesting how computing education can make concepts of data-driven technologies meaningful for students to understand and navigate the digital world.
Educational data mining is widely deployed to extract valuable information and patterns from academic data. This research explores new features that can help predict the future performance of undergraduate students and identify at-risk students early on. It answers some crucial and intuitive questions that are not addressed by previous studies. Most of the existing research is conducted on data from 2-3 years in an absolute grading scheme. We examined the effects of historical academic data of 15 years on predictive modeling. Additionally, we explore the performance of undergraduate students in a relative grading scheme and examine the effects of grades in core courses and initial semesters on future performances. As a pilot study, we analyzed the academic performance of Computer Science university students. Many exciting discoveries were made; the duration and size of the historical data play a significant role in predicting future performance, mainly due to changes in curriculum, faculty, society, and evolving trends. Furthermore, predicting grades in advanced courses based on initial pre-requisite courses is challenging in a relative grading scheme, as students’ performance depends not only on their efforts but also on their peers. In short, educational data mining can come to the rescue by uncovering valuable insights from academic data to predict future performance and identify the critical areas that need significant improvement.
With the development of technology allowing for a rapid expansion of data science and machine learning in our everyday lives, a significant gap is forming in the global job market where the demand for qualified workers in these fields cannot be properly satisfied. This worrying trend calls for an immediate action in education, where these skills must be taught to students at all levels in an efficient and up-to-date manner. This paper gives an overview of the current state of data science and machine learning education globally and both at the high school and university levels, while outlining some illustrative and positive examples. Special focus is given to vocational education and training (VET), where the teaching of these skills is at its very beginning. Also presented and analysed are survey results concerning VET students in Slovenia, Serbia, and North Macedonia, and their knowledge, interests, and prerequisites regarding data science and machine learning. These results confirm the need for development of efficient and accessible curricula and courses on these subjects in vocational schools.
Knowledge about Machine Learning is becoming essential, yet it remains a restricted privilege that may not be available to students from a low socio-economic status background. Thus, in order to provide equal opportunities, we taught ML concepts and applications to 158 middle and high school students from a low socio-economic background in Brazil. Results show that these students can understand how ML works and execute the main steps of a human-centered process for developing an image classification model. No substantial differences regarding class periods, educational stage, and sex assigned at birth were observed. The course was perceived as fun and motivating, especially to girls. Despite the limitations in this context, the results show that they can be overcome. Mitigating solutions involve partnerships between social institutions and university, an adapted pedagogical approach as well as increased on-by-one assistance. These findings can be used to guide course designs for teaching ML in the context of underprivileged students from a low socio-economic status background and thus contribute to the inclusion of these students.
Machine Learning (ML) is becoming increasingly present in our lives. Thus, it is important to introduce ML already in High School, enabling young people to become conscious users and creators of intelligent solutions. Yet, as typically ML is taught only in higher education, there is still a lack of knowledge on how to properly teach younger students. Therefore, in this systematic literature review, we analyze findings on teaching ML in High School with regard to content, pedagogical strategy, and technology. Results show that High School students were able to understand and apply basic ML concepts, algorithms and tasks. Pedagogical strategies focusing on active problem/project-based hands-on approaches were successful in engaging students and demonstrated positive learning effects. Visual as well as text-based programming environments supported students to build ML models in an effective way. Yet, the review also identified the need for more rigorous evaluations on how to teach ML.
Although Machine Learning (ML) is used already in our daily lives, few are familiar with the technology. This poses new challenges for students to understand ML, its potential, and limitations as well as to empower them to become creators of intelligent solutions. To effectively guide the learning of ML, this article proposes a scoring rubric for the performance-based assessment of the learning of concepts and practices regarding image classification with artificial neural networks in K-12. The assessment is based on the examination of student-created artifacts as a part of open-ended applications on the use stage of the Use-Modify-Create cycle. An initial evaluation of the scoring rubric through an expert panel demonstrates its internal consistency as well as its correctness and relevance. Providing a first step for the assessment of concepts on image recognition, the results may support the progress of learning ML by providing feedback to students and teachers.
Prior programming knowledge of students has a major impact on introductory programming courses. Those with prior experience often seem to breeze through the course. Those without prior experience see others breeze through the course and disengage from the material or drop out. The purpose of this study is to demonstrate that novice student programming behavior can be modeled as a Markov process. The resulting transition matrix can then be used in machine learning algorithms to create clusters of similarly behaving students. We describe in detail the state machine used in the Markov process and how to compute the transition matrix. We compute the transition matrix for 665 students and cluster them using the k-means clustering algorithm. We choose the number of cluster to be three based on analysis of the dataset. We show that the created clusters have statistically different means for student prior knowledge in programming, when measured on a Likert scale of 1-5.
Although Machine Learning (ML) has already become part of our daily lives, few are familiar with this technology. Thus, in order to help students to understand ML, its potential, and limitations and to empower them to become creators of intelligent solutions, diverse courses for teaching ML in K-12 have emerged. Yet, a question less considered is how to assess the learning of ML. Therefore, we performed a systematic mapping identifying 27 instructional units, which also present a quantitative assessment of the students’ learning. The simplest assessments range from quizzes to performance-based assessments assessing the learning of basic ML concepts, approaches, and in some cases ethical issues and the impact of ML on lower cognitive levels. Feedback is mostly limited to the indication of the correctness of the answers and only a few assessments are automated. These results indicate a need for more rigorous and comprehensive research in this area.