Critical thinking is a fundamental skill for 21st-century citizens, and it should be promoted from elementary school and developed in computing education. However, assessing the development of critical thinking in educational contexts presents unique challenges. In this study, a systematic mapping was carried out to investigate how to assess the development of critical thinking, or some of its skills, in K-12 computing teaching. The results indicate that primary studies on the development of critical thinking in K-12 computing education are concentrated in Asian countries, mainly focusing on teaching concepts such as algorithms and programming. Moreover, the studies do not present a fixed set of critical thinking skills assessed, and the skills are selected according to specific teaching and research needs. Most of the studies adopted student self-assessment using instruments that are well-known in the literature for assessing critical thinking. Many studies measured the quality of instruments for their research, obtaining favorable results and demonstrating consistency. However, the research points to a need for more diversity in assessment methods beyond student self-assessment. The findings suggest a need for more comprehensive and diverse critical thinking assessments in K-12 computing education, covering different educational stages and computing education concepts. This research aims to guide educators and researchers in developing more effective critical thinking assessments for K-12 computing education.
The insertion of Machine Learning (ML) in everyday life demonstrates the importance of popularizing an understanding of ML already in school. Accompanying this trend arises the need to assess the students’ learning. Yet, so far, few assessments have been proposed, most lacking an evaluation. Therefore, we evaluate the reliability and validity of an automated assessment of the students’ learning of an image classification model created as a learning outcome of the “ML for All!” course. Results based on data collected from 240 students indicate that the assessment can be considered reliable (coefficient Omega = 0.834/Cronbach's alpha α=0.83). We also identified moderate to strong convergent and discriminant validity based on the polychoric correlation matrix. Factor analyses indicate two underlying factors “Data Management and Model Training” and “Performance Interpretation”, completing each other. These results can guide the improvement of assessments, as well as the decision on the application of this model in order to support ML education as part of a comprehensive assessment.
Information technology (IT) is transforming the world. Therefore, exposing students to computing at an early age is important. And, although computing is being introduced into schools, students from a low socio-economic status background still do not have such an opportunity. Furthermore, existing computing programs may need to be adjusted in accordance to the specific characteristics of these students in order to help them to achieve the learning goals. Aiming at bringing computing education to all middle and high-school students, we performed a systematic literature review, in order to analyze the content, pedagogy, technology, as well as the main findings of instructional units that teach computing in this context. First results show that these students are able to learn computing, including concepts ranging from algorithms and programming languages to artificial intelligence. Difficulties are mainly linked to the lack of infrastructure and the lack of pre-existing knowledge in using IT as well as creating computing artifacts. Solutions include centralized teaching in assistive centers as well as a stronger emphasis on unplugged strategies. However, there seems to be a lack of more research on teaching computing to students from a low socio-economic status background, unlocking their potential as well to foster their participation in an increasing IT market.
Knowledge about Machine Learning is becoming essential, yet it remains a restricted privilege that may not be available to students from a low socio-economic status background. Thus, in order to provide equal opportunities, we taught ML concepts and applications to 158 middle and high school students from a low socio-economic background in Brazil. Results show that these students can understand how ML works and execute the main steps of a human-centered process for developing an image classification model. No substantial differences regarding class periods, educational stage, and sex assigned at birth were observed. The course was perceived as fun and motivating, especially to girls. Despite the limitations in this context, the results show that they can be overcome. Mitigating solutions involve partnerships between social institutions and university, an adapted pedagogical approach as well as increased on-by-one assistance. These findings can be used to guide course designs for teaching ML in the context of underprivileged students from a low socio-economic status background and thus contribute to the inclusion of these students.
Machine Learning (ML) is becoming increasingly present in our lives. Thus, it is important to introduce ML already in High School, enabling young people to become conscious users and creators of intelligent solutions. Yet, as typically ML is taught only in higher education, there is still a lack of knowledge on how to properly teach younger students. Therefore, in this systematic literature review, we analyze findings on teaching ML in High School with regard to content, pedagogical strategy, and technology. Results show that High School students were able to understand and apply basic ML concepts, algorithms and tasks. Pedagogical strategies focusing on active problem/project-based hands-on approaches were successful in engaging students and demonstrated positive learning effects. Visual as well as text-based programming environments supported students to build ML models in an effective way. Yet, the review also identified the need for more rigorous evaluations on how to teach ML.