This study aims to explain the relationships between secondary school students' digital literacy, computer programming self-efficacy and computational thinking self-efficacy. The study group consists of 204 secondary school students. A relational survey model was used in the research method and three different data collection tools were used to collect data. The structural equation model was used in data analysis to reveal a model that explains and predicts the relationships between variables. According to the results of the research, it was determined that digital literacy of secondary school students affected their computer programming self-efficacy, digital literacy affected their computational thinking self-efficacy, and computer programming self-efficacy affected their computational thinking self-efficacy. It was also found that digital literacy skills have an indirect effect on secondary students' computational thinking self-efficacy on computational thinking self-efficacy.
Even though working with data is as important as coding for understanding and dealing with complex problems across multiple fields, it has received very little attention in the context of Computational Thinking. This paper discusses an approach for bridging the gap between Computational Thinking with Data Science by employing and studying classification as a higher-order thinking process that connects the two. To achieve that, we designed and developed an online constructionist gaming tool called SorBET which integrates coding and database design enabling students to interpret, organize, and analyze data through game play and game design. The paper presents and discusses the results of a pilot study that aimed to investigate the data practices secondary students develop through playing and modifying SorBET games, and to determine the impact of game modding on student critical engagement with CT. According to the results, students developed and used certain data practices such as data interpretation and data model design to become better players or to design an interesting classification game. Moreover, game modding process motivated students to question the original games’ content, leading them to develop a critical stance towards the game data model and representations.
Computing science which focuses on computational thinking, has been a compulsory subject in the Thai science curriculum since 2018. This study is an initial program to explore how and to what extend computing science that focused on STEM education learning approach can develop pre-service teachers' computational thinking. The online STEM-based activity-Computing Science Teacher Training (CSTT) Program was developed into a two-day course. The computational thinking test (CTT) data indicated pre-service teachers’ fundamental skills of computational thinking: decomposition, algorithms, pattern recognition, pattern generalization and abstractions. The post-test mean score was higher than the pre-test mean score from 9.27 to 10.9 or 13.58 percentage change. The content analysis indicated that there were five key characteristics founded in the online training program comprised: (1) technical support such as online meeting program, equipment, trainer ICT skills (2) learning management system such as Google Classroom, creating classroom section in code.org (3) the link among policy, curriculum and implementation (4) pre-service teachers' participation and (5) rigor and relevance of how to integrate the applications of computing science into the classroom.
Research trends on computational thinking (CT) and its learning strategies are showing an increase. The strategies are varying, for example is using games to provide enjoyment, engagement, and experience. To improve the high level of immersion and presence of game objects, learning strategies through games can be improved by virtual reality (VR) technology and its application. However, a systematic review that specifically discusses game based in VR (GBiVR) settings is lacking. This paper reports previous studies systematically about the strategies used to learn CT through games and VR applications. 15 papers were selected through Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. As the result, this study proposes a conceptual framework for designing a strategy to learn CT through GBiVR settings. The framework consists of critical aspects of variables that can be considered in the learning environment like game elements, VR features, and CT skills. All the aspects are discussed below.
Computer science concepts have an important part in other subjects and thinking computationally is being recognized as an important skill for everyone, which leads to the increasing interest in developing computational thinking (CT) as early as at the comprehensive school level. Therefore, research is needed to have a common understanding of CT skills and develop a model to describe the dimensions of CT. Through a systematic literature review, using the EBSCO Discovery Service and the ACM Digital Library search, this paper presents an overview of the dimensions of CT defined in scientific papers. A model for developing CT skills in three stages is proposed: i) defining the problem, ii) solving the problem, and iii) analyzing the solution. Those three stages consist of ten CT skills: problem formulation, abstraction, problem reformulation, decomposition, data collection and analysis, algorithmic design, parallelization and iteration, automation, generalization, and evaluation.