Programming students need to be informed about plagiarism and collusion. Hence, we developed an assessment submission system to remind students about the matter. Each submission will be compared to others and any similarities that do not seem a result of coincidence will be reported along with their possible reasons. The system also employs gamification to promote early and unique submissions. Nevertheless, the system might put unnecessary pressure as coincidental similarities can still be reported. Further, it does not specifically cover self-plagiarism. We revisit the system and shift our focus to report simulated similarities from student own submission instead of reporting actual similarities across submissions. According to our evaluation with 390 students and five quasi-experiments, students with simulated similarities are slightly more aware of plagiarism and collusion, self-plagiarism in particular. Their awareness of the matter is somewhat acceptable (around 75%) and they see the benefits of our assessment submission system.
This work is part of a research project whose main objective is to understand the impact that the use of Information and Communication Technology (ICT) has on the teaching and learning process on the subject of Physics. We will show that, with the use of a storm simulator, physics students improve their learning process on one hand they understand storm phenomenon, and on the other hand they assimilate in better way physics ideas. Computer technology is a positive supplement to bridge the gap between education and the technological world in which we live. Computer-assisted technologies at the university offer students a great access to information, an eager motivation to learn, a jump-start on marketable job skills and an enhanced quality of class work.
Considerable pedagogical advantage may be gained by the integration of the different ICT tools commonly used in teaching science and technology, particularly by integrating ``real'' and ``virtual'' laboratory activities. In the context of this paper, ``real'' laboratories involve benchtop experiments utilizing data acquisition systems while ``virtual'' laboratories entail interactive simulations and animations. Examples of such integrated activities are described; namely, (i) the study of wave phenomena using sound and (ii) a study of motion in one dimension. Such integrated computerized teaching tools also provide an opportunity for a greater level of integration of different science and technology disciplines.