Even though working with data is as important as coding for understanding and dealing with complex problems across multiple fields, it has received very little attention in the context of Computational Thinking. This paper discusses an approach for bridging the gap between Computational Thinking with Data Science by employing and studying classification as a higher-order thinking process that connects the two. To achieve that, we designed and developed an online constructionist gaming tool called SorBET which integrates coding and database design enabling students to interpret, organize, and analyze data through game play and game design. The paper presents and discusses the results of a pilot study that aimed to investigate the data practices secondary students develop through playing and modifying SorBET games, and to determine the impact of game modding on student critical engagement with CT. According to the results, students developed and used certain data practices such as data interpretation and data model design to become better players or to design an interesting classification game. Moreover, game modding process motivated students to question the original games’ content, leading them to develop a critical stance towards the game data model and representations.
This review paper presents a systematic literature review on the use of Augmented Reality (AR) in engineering education, and specifically in student’s spatial ability training, for the last decade. Researchers have explored the benefits of AR, and its application has been of increasing interest in all levels of education. Engineering students tend to have difficulties in acquiring visualization skills, and hence, AR is gaining momentum in enhancing students’ learning achievements. This paper aims to present valuable information to researchers, tutors and software developers of learning technology systems concerning the advantages and limitations of AR in spatial ability training, the incorporation of adaptivity and personalization in AR applications as well as the aspects of spatial ability having been evaluated using AR and the prevalent evaluation methods for AR applications. To this direction, a total of thirty-two (32) studies were reviewed, having been published since 2010. The findings reveal an increase in the number of studies during the last three years. One major conclusion is the improvement of learners’ spatial ability using AR in educational settings, and the noted challenge is the need for more learning content. One research gap that has been identified is the lack of personalization in the developed applications, offering space for future research. Concluding, this area is under-researched, and thus, there is scope for a lot of improvement.